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Abstract. In this work, we present an extension of the DIVINE model
checker that allows for analysis of C and C++ programs under the
x86-TSO relaxed memory model. We use an approach in which the pro-
gram to be verified is first transformed, so that it itself encodes the
relaxed memory behavior, and after that it is verified by an explicit-
state model checker supporting only the standard sequentially consis-
tent memory. The novelty of our approach is in a careful design of an
encoding of x86-TSO operations so that the nondeterminism introduced
by the relaxed memory simulation is minimized. In particular, we allow
for nondeterminism only in connection with memory fences and load op-
erations of those memory addresses that were written to by a preceding
store. We evaluate and compare our approach with the state-of-the-art
bounded model checker CBMC and stateless model checker Nidhugg. For
the comparison we employ SV-COMP concurrency benchmarks that do
not exhibit data nondeterminism, and we show that our solution built
on top of the explicit-state model checker outperforms both of the other
tools. The implementation is publicly available as an open source soft-
ware.

1 Introduction

Almost all contemporary processors exhibit relaxed memory behavior, which is
caused by cache hierarchies, instruction reordering, and speculative execution.
This, together with the rise of parallel programs, means that programmers often
have to deal with the added complexity of programming under relaxed mem-
ory. The behavior of relaxed memory can be highly unintuitive even on x86
processors, which have stronger memory model than most other architectures.
Therefore, programmers often have to decide whether to stay relatively safe with
higher level synchronization constructs such as mutexes, or whether to tap to
the full power of the architecture and risk subtle unintuitive behavior of relaxed
memory accesses. For these reasons, it is highly desirable to have robust tools
for finding bugs in programs running under relaxed memory.
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Our aim is primarily to help with the development of lock-free data structures
and algorithms. Instead of using higher level synchronization techniques such as
mutexes, lock-free programs use low-level atomic operations provided by the
hardware or programming language to ensure correct results. This way, lock-free
programs can exploit the full power of the architecture they target, but they
are also harder to design, as the ordering of operations in the program has to
be considered very carefully. We believe that by providing a usable validation
procedure for lock-free programs, more programmers will find courage to develop
fast and correct programs.

Sadly, conventional validation and verification techniques often fail to de-
tect errors caused by relaxed memory. Many of these techniques work best for
deterministic, single-threaded programs, and techniques applicable to parallel
programs often assume the memory is sequentially consistent. With sequentially
consistent memory, any memory action is immediately visible to all processors
and cores in the system, there is no observable caching or instruction reordering.
That is, an execution of a parallel program under sequential consistency is an
interleaving of actions of its threads [25]. Recently, many techniques for analysis
and verification which take relaxed memory into account have been developed,
and research in this field is still pretty active. In this work, we are adding a
new technique which we hope will make the analysis of C and C++ programs
targeting x86 processors easier.

Our technique is built on top of DIVINE, an explicit-state model checker for
C and C++ programs [8]. DIVINE targets both sequential and parallel programs
and can check a range of safety properties such as assertion safety and memory
safety. We extend DIVINE with the support for the x86-TSO memory model
[34] which describes the relaxed behavior of x86 and x86 64 processors. Due to
the prevalence of the Intel and AMD processors with the x86 64 architecture,
the x86-TSO memory model is a prime target for program analysis. It is also
relatively strong and therefore underapproximates most of the other memory
models – any error which is observable on x86-TSO is going to manifest itself
under the more relaxed POWER or ARM memory models.

To verify a program under x86-TSO, we first transform it by encoding the
semantics of the relaxed memory into the program itself, i.e. the resulting trans-
formed program itself simulates nondeterministically relaxed memory opera-
tions. To reveal an error related to the relaxed memory behavior, it is then
enough to verify the transformed program with a regular model checker sup-
porting only the standard sequentially consistent memory.

In this paper we introduce a new way of encoding the relaxed memory be-
haviour into the program. Our new encoding introduces low amount of nonde-
terminism, which is the key attribute that allows us to tackle model checking of
nontrivial programs efficiently. In particular, we achieve this by delaying non-
deterministic choices arising from x86-TSO as long as possible. Our approach is
based on the standard operational semantic of x86-TSO with store buffers, but
it removes entries from the store buffer only when a load or a fence occurs (or
if the store buffer is bounded and full). Furthermore, in loads we only remove



those entries from store buffers that relate to the address being loaded, even if
there are some older entries in the store buffer.

The rest of the paper is structured as follows: Section 2 contains preliminaries
for our work, namely information about relaxed memory models in general and
the x86-TSO memory model in particular, and about DIVINE. Section 3 then
presents our contribution, details about its implementation, and integration with
the rest of DIVINE. Section 4 provides evaluation results which compare DIVINE
to Nidhugg [1] and CBMC [14] on a range of benchmarks from SV-COMP [9].
Section 5 summarizes related work and Section 6 concludes this work.

2 Preliminaries

2.1 Relaxed Memory Models

The relaxed behavior of processors arises from optimizations in cache consistency
protocols and observable effects of instructions reordering and speculation. The
effect of this behavior is that memory-manipulating instructions can appear to
be executed in a different order than the order in which they appear in the
binary, and their effect can even appear to be in different order on different
threads. For efficiency reasons, virtually all modern processors (except for very
simple ones in microcontrollers) exhibit relaxed behavior. The extent of this
relaxation is dependent on the processor architecture (e.g., x86, ARM, POWER)
but also on the concrete processor model. Furthermore, the actual behavior
of the processor is often not precisely described by the processor vendor [34].
To abstract from the details of particular processor models, relaxed memory
models are used to describe (often formally) behavior of processor architectures.
Examples of relaxed memory models of modern processors are the memory model
of x86 and x86 64 CPUs described formally as x86-TSO [34] and the multiple
variants of POWER [33, 27] and ARM [19, 5, 31] memory models.

For the description of a memory model, it is sufficient to consider operations
which affect the memory. These operations include loads (reading of data from
the memory to a register in the processor), stores (writing of data from a register
to the memory), memory barriers (which constrain memory relaxation), and
atomic compound operations (read-modify-write operations and compare-and-
swap operation).

2.2 The x86-TSO Memory Model

The x86-TSO is very similar to the SPARC Total Store Order (TSO) memory
model [35]. It does not reorder stores with each other, and it also does not
reorder loads with other loads. The only relaxation allowed by x86-TSO is that
store can appear to be executed later than a load which succeeds it. The memory
model does not give any limit on how long a store can be delayed. An example
of non-intuitive execution of a simple program under x86-TSO can be found in
Figure 1.



int x = 0, y = 0;

void thread0() {
y = 1;

int a = x;

int c = y;

}
void thread1() {

x = 1;

int b = y;

int d = x;

}

Is a = 0 ∧ b = 0 reachable?

shared memory

x 0

y 0 store buffer store buffer

y 1 x 1

thread 0

y = 1;

load x; →0

load y; →1

thread 1

x = 1;

load y; →0

load x; →1

Fig. 1. A demonstration of the x86-TSO memory model. The thread 0 stores 1 to
variable y and then loads variables x and y. The thread 1 stores 1 to x and then loads
y and x. Intuitively, we would expect it to be impossible for a = 0 and b = 0 to both
be true at the end of the execution, as there is no interleaving of thread actions which
would produce such a result. However, under x86-TSO, the stores are cached in the
store buffers (marked red). A load consults only shared memory and the store buffer
of the given thread, which means it can load data from the memory and ignore newer
values from the other thread (blue). Therefore a and b will contain old values from the
memory. On the other hand, c and d will contain local values from the store buffers
(locally read values are marked green).

The operational semantics of x86-TSO is described by Sewell et al. in [34].
The corresponding machine has hardware threads (or cores), each with associ-
ated local store buffer, a shared memory subsystem, and a shared memory lock.
Store buffers are first-in-first-out caches into which store entries are saved before
they are propagated to the shared memory. Load instructions first attempt to
read from the store buffer of the given thread, and only if they are not succes-
full, they read from the shared memory. Store instructions push a new entry
to the local store buffer. Atomic instructions include various read-modify-write
instructions, e.g. atomic arithmetic operations (which take memory address and
a constant),1 or compare-and-swap instruction.2 All atomic instructions use the
shared memory lock so that only one such instruction can be executed at a given
time, regardless of the number of hardware threads in the machine. Furthermore,
atomic instructions flush the store buffer of their thread before they release the
lock. This means that effects of atomic operations are immediately visible, i.e.,
atomics are sequentially consistent on x86-TSO. On top of these instructions,
x86-TSO has a full memory barrier (mfence) which flushes the store buffer of
the thread that executed it.3

1 These instructions have the lock prefix in the assembly, for example lock xadd for
atomic addition.

2 lock cmpxchg
3 There are two more fence instructions in the x86 instruction set, but according to [34]

they are not relevant to normal program execution.



To recover sequential consistency on x86, it is necessary to make memory
stores propagate to the main memory before subsequent loads execute. This is
most commonly done in practice by inserting memory fence after each store. An
alternative approach would be to use atomic exchange instruction (lock xchg)
which can atomically swap value between a register and a memory slot.

One of the specifics of x86 is that it can handle unaligned memory oper-
ations.4 While the x86-TSO paper does not give any specifics about handling
unaligned and mixed memory operations (e.g., writing a 64-bit value and then
reading a 16-bit value from inside it) it seems from our own experiments that
such the operations are not only fully supported, but they are also correctly syn-
chronized if atomic instructions are used. This is in agreement with the afore-
mentioned operational semantics of x86-TSO in which all the atomic operations
share a single global lock.

2.3 DIVINE

DIVINE is an explicit-state model checker for C and C++ code that utilizes the
clang compiler to translate the input program into the LLVM bitcode. This bit-
code is then instrumented and interpreted by DIVINE’s execution engine, DiVM.
The complete workflow is illustrated in Figure 2. DIVINE focuses on both parallel
and sequential programs and is capable of finding a wide range of problems such
as memory corruptions, assertion violations, and deadlocks caused by improper
use of mutexes. DIVINE also has very good support for C and C++, which it
achieves by employing of the standard clang compiler, and the libc++ standard
library. Moreover, a few custom-built libraries are provided to enable full sup-
port of C++14 and C11 [8, 41]. To efficiently handle parallel programs, DIVINE
employs state space reductions and has a graph based representation of program
memory. More details about the internal architecture of DIVINE can be found
in [32].

C++ code property and options

compiler

libraries

LLVM IR instrumentation LLVM IR

verification core

Valid

Error
trace

DIVINE

Fig. 2. Verification workflow of DIVINE when it is given a C++ file as an input. Boxes
with rounded corners represent stages of input processing.

4 Other architectures, for example ARM, require loaded values to be aligned, usually
so that the address is divisible by the value size.



2.4 Relaxed Memory in C/C++ and LLVM

There are several ways in which C and C++ code can use atomic instructions
and fences. These include inline assembly, compiler-provided intrinsic functions,
and (since C11 and C++11) standard atomic variables and operations. While
the constructs used to define atomic variables differ between C and C++, the
memory model itself is the same for C11 and C++11. The C and C++ atomics
are designed so that programmers can use the full potential of most platforms:
the atomic operations are parametrized by a memory order which constrains how
instructions can be reordered. The compiler is responsible for emitting assembly
code which makes sure these ordering requirements are met. From the point
of x86-TSO, all memory orderings except for sequential consistency amount to
unconstrained execution, as such they exhibit non-atomic memory accesses.

When the C or C++ code is compiled to LLVM bitcode, the intrinsic functions
and the standard atomic operations of the high-level programming language are
mapped in the very same way to the corresponding LLVM instructions. The
semantics of LLVM memory operations mostly copies the C++ memory model
and behavior of the C++ atomic operations.

3 x86-TSO in DIVINE

DIVINE does not natively support relaxed memory, and we decided not to com-
plicate the already complex execution engine and memory representation with
a simulation of relaxed behavior. Instead, we encode the relaxed behavior into
the program itself on the level of LLVM intermediate representation. The mod-
ified program running under sequential consistency simulates all x86-TSO runs
of the original program, up to some bound on the number of stores which can
be delayed. The program transformation is rather similar to the one presented
in our previous work in [40]. The main novelty is in in the way of simulation
of x86-TSO which produces significantly less nondeterminism and therefore sub-
stantial efficiency improvements.

3.1 Simulation of the x86-TSO Memory Model

The most straight-forward way of simulating x86-TSO is to add store buffers to
the program and flush them nondeterministically, for example using a dedicated
flusher thread which flushes one entry at a time and interleaves freely with all
other threads. We used this technique in [40]. This approach does, however,
create many redundant interleavings as the flusher thread can flush an entry
at any point, regardless of whether or not it is going to produce a run with a
different memory access ordering, i.e. without any respect to the fact whether
the flushed value is going to be read or not.

To alleviate this problem, it is possible to delay the choice whether to flush an
entry from a store buffer to the point when the first load tries to read a buffered
address. Only when such a load is detected, all possible ways the store buffers



could have been flushed are simulated. In this case, the load can trigger flushing
from any of the store buffers, to simulate that they could have been flushed
before the load. To further improve the performance, only entries relevant to
the loaded address are be affected by the flushing. These are the entries with
matching addresses and any entries which precede them in the corresponding
store buffers (that are flushed before them to maintain the store order).

A disadvantage of this approach is that there are too many ways in which
a store buffer entry can be flushed, especially if this entry is not the oldest in
its store buffer, or if there are entries concerning the same addresses in multiple
store buffers. All of these cases can cause many entries to be flushed, often with
a multitude of interleavings of entries from different store buffers which has to
be simulated.

Therefore, we propose a delayed flushing : entries in the store buffers can be
kept in the store buffer after newer entries were flushed if they are marked as
flushed. Such the entries behave as if they were already written to the main
memory, but can still be reordered with entries in other store buffers. That is,
when there is a flushed entry for a given location in any store buffer, the value
stored in the memory is irrelevant as any load will either read the flushed entry
or entry from the other store buffer (which can be written after the flushed
entry). Flushed entries make it possible to remove store buffer entries out of
order while preserving total store order. This way a load only affects entries
from the matching addresses and not their predecessors in the store order. This
improvement is demonstrated in Figures 3 to 5.

s.b. 1

x ← 1

y ← 1

x ← 2

y ← 2

s.b. 2

x ← 3

y ← 3

void thread0() {
int a = y;

int b = x;

}

Fig. 3. Suppose thread0 is
about to execute with the
displayed contents of store
buffers of two other threads
and suppose it had non-
deterministically chosen to
load value 2 from y (de-
noted by green in the fig-
ure). The entries at the top
of the store buffers are the
oldest entries.

s.b. 1

x ← 1

x ← 2

s.b. 2

x ← 3

y ← 3

void thread0() {
int a = y; // →2
int b = x;

}

Fig. 4. At this point,
x entries of store buffer
1 are marked as flushed
(orange) and the y← 1

entry was removed as it
was succeeded by the used
entry y← 2. The thread
had nondeterministically
selected to load x from
store buffer 2.

s.b. 1 s.b. 2

y ← 3

void thread0() {
int a = y; // →2
int b = x; // →3

}

Fig. 5. In the load of x, all
x entries were evicted from
the buffers – all the flushed
entries for x (which were
not selected) had to be
dropped before x← 3 was
propagated to the memory.
The last entry (y← 3) will
remain in the store buffer
if y will never be loaded in
the program again.



DIVINE handles C and C++ code by translating it to LLVM and instrument-
ing it (see Figure 2 for DIVINE’s workflow). The support for relaxed memory is
added in the instrumentation step, by replacing memory operations with calls to
functions which simulate relaxed behavior. Essentially, all loads, stores, atomic
instructions, and fences are replaced by calls to the appropriate functions.

All of the x86-TSO-simulating functions are implemented so that they are ex-
ecuted atomically by DIVINE (i.e., not interleaved). The most complex of these
is the load operation. It first finds all entries with overlap the loaded address
(matching entries) and out of these matching entries, it nondeterministically se-
lects entries which will be written before the load (selected entries). All matching
entries marked as flushed have to be selected for writing. Similarly, all matching
entries which occur in a store buffer before a selected entry also have to be se-
lected. Out of the selected entries, one is selected to be written last – this will
be the entry read by the load. Next, selected entries are written, and all non-
matching entries which precede them are marked as flushed. Finally, the load is
performed, either from the local store buffer if matching entry exists there, or
from the shared memory.

The remaining functions are relatively straightforward – stores push a new
entry to the store buffer, possibly evicting the last entry from the store buffer
if the store buffer exceeds its size bound; fences flush all entries from the store
buffer of the calling thread; atomic operations are basically a combination of a
load, store, and a fence. The only intricate part of these operations is that if an
entry is flushed out of the store buffer, the entries from other store buffers which
involve the same memory location can also be non-deterministically flushed (to
simulate they could have been flushed before the given entry). This flushing is
similar to flushing performed in load. An example which shows a series of loads
can be found in Figures 3 to 5.

We will now argue that this way of implementing x86-TSO is correct. First,
the nondeterminism in selecting entries to be flushed before a load serves the
same purpose as the nondeterminism in the flusher thread of the more conven-
tional implementation. The only difference is that in the flusher-thread scenario
the entries are flushed in order, while in our new approach we are selecting only
from the matching entries. Therefore, the difference between the two approaches
is only on those entries which are not loaded by the load causing the flush, hence
cannot be observed by the load. However, any entry which would be flushed be-
fore the selected entries in the flusher-thread approach is now marked with the
flushed flag. This flag makes sure that such an entry will be flushed before an
address which matches it is loaded, and therefore it behaves as if it was flushed.
This way, the in-thread store order is maintained.

3.2 Stores to Freed Memory

As x86-TSO simulation can delay memory stores, special care must be taken to
preserve memory safety of the program. More precisely, it is necessary to prevent
the transformed program from writing into freed memory. This problem occurs
if a store to dynamically allocated memory is delayed after the memory is freed,



or if a store to stack location is delayed after the corresponding function had
returned. This problem does not require special handling in normal program
execution as both stack addresses as well as dynamic memory addresses remain
to be writable for the program even after they are freed (except for memory
mapped files, but these have to be released by a system call which includes
sufficiently strong memory barrier).

To solve the problem of freed memory, it is necessary to evict store buffer
entries which correspond to the freed memory just before the memory is freed.
For entries not marked as flushed, this eviction concerns only store buffer of the
thread which freed the memory. If some other thread attempted to write to the
freed memory, this is an error as there is insufficient synchronization between
the freeing and the store to the memory. However, corresponding entries marked
as flushed should be evicted from all store buffers, as these entries correspond to
changes which should have been already written to the shared memory. The pro-
gram transformation takes care of inserting code to evict entries corresponding
to freed memory from the store buffer.

3.3 Integration with Other Parts of DIVINE

The integration of x86-TSO simulation with the rest of DIVINE is rather straight-
forward. No changes are required in the DIVINE’s execution engine or state space
exploration algorithms. As for the libraries shipped with DIVINE, only minor
tweaks were required. The pthread implementation had to be modified to add
full memory barrier both at the beginning and at the end of every synchroniz-
ing functions. This corresponds to barriers present in the implementations used
for normal execution, pthread mutexes and other primitives have to guaran-
tee sequential consistency of the guarded operations (provided all accesses are
properly guarded).

The DIVINE’s operating system, DiOS, is used to implement low-level thread-
ing as well as simulation of various filesystem APIs [8]. We had to add memory
barrier into the system call entry which hands control to DiOS. DiOS itself does
not use relaxed memory simulation – the implementation of x86-TSO operations
detects that the code is executed in the kernel mode and bypasses store buffers.
In this way, the entire DiOS executes as if under sequential consistency. This
synchronization is easily justifiable – system calls require a memory barrier or
kernel lock in most operating systems.

3.4 Improvements

We have implemented two further optimizations of our x86-TSO simulation.

Static Local Variable Detection Accesses of local variables which are not acces-
sible to other threads need not use store buffering. For this reason, we have
inserted a static analysis pass which annotates accesses to local memory be-
fore the x86-TSO instrumentation. The instrumentation ignores such annotated
accesses. The static analysis can detect most local variables which are never
accessed using pointers.



Dynamic Local Memory Detection DIVINE can also dynamically detect if the
given memory object is shared between threads (i.e., it is accessible from global
variables or stacks of more then one thread). Using this information, it is possi-
ble to dynamically bypass store buffers for operations with non-shared memory
objects. This optimization is correct even though the shared status of memory
can change during its lifetime. A memory object o can become shared only when
its address is written to some memory object s which is already shared (or o
can become shared transitively through a series of pointers and intermediate
objects). For this to happen, there has to be a store to the already shared object
s, and this store has to be propagated to other threads. Once the store of the
address of o is executed and written to the store buffer, o becomes shared, and
any newer stores into it will go through the store buffer. Furthermore, once this
store is propagated, any store which happened before turning o into a shared
object also had to be propagated as x86-TSO does not reorder stores. Therefore,
there is no reason to put stores to o through the store buffer if o is not shared.
This optimization is not correct for memory models which allow store reordering
– for such memory models, we would need to know that the object will never be
shared during its lifetime.

3.5 Bounding the Size of Store Buffers

The complexity of analysis of programs under the x86-TSO memory model is
high. From the theoretical point of view, we know due to Atig et al. [6] that
reachability for programs with finite-state threads which run under TSO is de-
cidable, but non-primitive recursive (it is in pspace for sequential consistency).
The proof uses the so called SPARC TSO memory model [35] that is very simi-
lar to x86-TSO. However, the proof of decidability does not translate well to an
efficient decision procedure, and real-world programs are much more complex
than the finite-state systems used in the decidability proof.

For this reason, we would need to introduce unbounded store buffers to prop-
erly verify real-world programs. Unfortunately, this is very quite impractical.
Therefore, we have implemented a program transformation that inserts store
buffers of limited size, limitting thus the number of store operations that can be
efficiently delayed at the same time. Nevertheless, the size of the store buffers is
fully configurable, and it currently defaults to 32, a value probably high enough
to discover most bugs which can be observed on a real hardware.

Our implementation also supports the store buffers of unlimited size (when
size is set to 0). In this mode, programs with loops that write into shared memory
will not have finite state space. Therefore, DIVINE will not terminate unless it
discovers an error in the program. Verification with unbounded buffers will still
terminate for terminating programs and for all programs with errors.

4 Evaluation

The implementation is available at https://divine.fi.muni.cz/2018/

x86tso/, together with information about how to use it. We compared our imple-



Table 1. Comparison of the default configuration of DIVINE with CBMC and Nidhugg.

CBMC Nidhugg DIVINE

finished 21 25 27
TSO bugs 3 3 9
unique 5 3 5

mentation with the stateless model checker Nidhugg [1] and the bounded model
checker CBMC [14, 24]. For evaluation we used SV-COMP benchmarks from the
Concurrency category [9], excluding benchmarks with data nondeterminism5 as
our focus is on performance of relaxed memory analysis, not on handling of
nondeterministic values. Furthermore, due to the limitation of stateless model
checking with DPOR, Nidhugg cannot handle data nondeterminism at all. There
are 55 benchmarks in total.

The evaluation was performed on a machine with 2 dual core Intel Xeon 5130
processors running at 2 GHz with 16 GB of RAM. Each tool was running with
memory limit set to 10 GB and time limit set to 1 hour. The tools were not
limited in the number of CPUs they can use.

We have used CBMC version 5.8 with the option --mm tso. Since there is no
official release of Nidhugg, we have used version 0.2 from git, commit id 375c554

with -tso option to enable relaxed memory support and inserted a definition of
the VERIFIER error function. For DIVINE, we have used the --svcomp option
to enable support for SV-COMP atomic sections (which are supported by default
by CBMC and Nidhugg), and we disabled nondeterministic memory failure by
using the divine check command (SV-COMP does not consider the possibility
of allocation failure). To enable x86-TSO analysis, --relaxed-memory tso is
used for DIVINE.6 The buffer bound was the default value (32) unless stated
otherwise.

Table 1 compares performance of the default configuration of DIVINE with
the remaining tools. The line “finished” shows the total number of benchmarks
for which the verification task finished with the given limits. From these the line
“TSO bugs” shows the number of errors caused by relaxed memory in bench-
marks which were not supposed to contain any bugs under sequential consistency.
All discovered errors were manually checked to really be observable under the
x86-TSO memory model. Finally, “unique” shows the number of benchmarks
solved only by the given tool and not the other two. There were only 8 bench-
marks solved by all three tools, all of them without any errors found.

Table 2 shows effects of buffer size bound and improvements described in
Section 3.4. It can be seen that all versions perform very similarly, only one more
benchmark was solved by the versions with dynamic shared object detection

5 I.e., all the benchmarks which contain calls to functions of the VERIFIER nondet *

family were excluded.
6 The complete invocation is divine check --svcomp --relaxed-memory tso

BENCH.c.



Table 2. Comparison of various configurations of DIVINE. The “base” version uses
none of the improvements from Section 3.4. The configurations marked with “s” add
the static local variable optimization, while the configurations marked with “d” add the
dynamic detection of non-shared memory objects. The “+sdu” configuration has both
optimizations enabled and it has unbounded buffers. Finally, the “+sd4” has buffer
bound set to 4 entries instead of the default 32 entries. The default version is “+sd”.

base +s +d +sd +sdu +sd4

finished 26 26 27 27 27 27
TSO bugs 8 8 9 9 9 9

Table 3. Comparison of various versions of DIVINE on benchmarks on the 26 which
all the versions finished. For the description of these versions, please refer to Table 2.

base +s +d +sd +sdu +sd4

states 252 k 263 k 250 k 231 k 206 k 296 k
time 2:14:49 2:17:13 1:09:23 1:05:05 0:58:28 1:24:59

(the remaining solved benchmarks were the same for all versions). The number
of solved benchmarks remains the same regardless of used store buffer bound.

Table 3 offers more detailed look at the 26 benchmarks solved by all versions
of DIVINE. It shows the aggregate differences in state space sizes and solving
times. It can be seen that the dynamic shared object detection improves perfor-
mance significantly. Interestingly, we can see that of the 3 versions which differ
only in store buffer size (“+sd”, “+sdu”, and “+sd4”), the unbounded version
performs the best. We expect this to be caused by the nondeterminism in flush-
ing the excessive entries out of the store buffer when the bound is reached – this
can trigger flushing of matching entries from other store buffers and therefore
increase nondeterminism.

5 Related Work

There are numerous techniques for analysis of programs with respect to relaxed
memory.

Verification of Absence of SC Violations For these methods, the question is
whether a program, when running under a relaxed memory model, exhibits any
runs not possible under sequential consistency. This problem is explored under
many names, e.g. (TSO-)safety [12], robustness [11, 16], stability [4], and mon-
itoring of sequential consistency [13]. A similar techniques are used in [38] to
detect data races in Java programs. A related problem of correspondence be-
tween a parallel and sequential implementation of a data structure is explored
in [29]. Some of these techniques can also be used to insert memory fences into
the programs to recover sequential consistency.



Neither of these techniques is directly comparable to our method. For these
techniques, a program is incorrect if it exhibits relaxed behavior, while for us, it is
incorrect if it violates specification (e.g., assertion safety and memory safety). In
practice, the appearance of relaxed behavior is often not a problem, provided the
overall behavior of the data structure or algorithm matches desired specification.
In many lock-free data structures, a relaxed behavior is essential to achieving
high performance.

Direct Analysis Techniques There are multiple methods for analysis of relaxed
memory models based on program transformation. In [3] a transformation-based
technique for the x86, POWER, and ARM memory models is presented. Another
approach to program transformation is taken in [7], in this case, the transforma-
tion uses context switch bounding but not buffer bounding, and it uses additional
copies for shared variables for TSO simulation. In [2] the context-bounded anal-
ysis using transformation is applied to the POWER memory model. Our work
in [40] presents a transformation of LLVM bitcode to simulate buffer-bounded
x86-TSO runs; compared to this work it has significantly less efficient implemen-
tation of the x86-TSO simulation.

A stateless model checking [20] approach to the analysis of programs run-
ning under the C++11 memory model (except for the release-consume synchro-
nization) is presented in [28]. In [39] the authors focus mostly on modeling of
TSO and PSO and its interplay with dynamic partial order reduction (DPOR,
[18]). They combine modeling of thread scheduling nondeterminism and memory
model nondeterminism using store buffers to a common framework by adding
shadow thread for each store buffer which is responsible for flushing contents
of this buffer to the memory. Another approach to combining TSO and PSO
analysis with stateless model checking is presented in [1]. The advantage of this
approach is that for a program without relaxed behavior it should produce no
additional traces compared to sequential consistency. Another approach to state-
less model checking is taken in [23], which uses execution graphs to explore all
behavior of a C/C++ program under a modified C++11 memory model without
exploring its interleaving directly.

So far, all of the described techniques used some kind of bounding to achieve
efficiency – either bounding number of reordered operations, number of context
switches, or number of iterations of loops. An unbounded approach to verifica-
tion of programs under TSO is presented in [26]. It uses store buffers represented
by automata and leverages cycle iteration acceleration to get a representation
of store buffers on paths which would form cycles if values in store buffers were
disregarded. It does not, however, target any real-world programming language.
Instead, it targets a modified Promela language [21]. Another unbounded ap-
proach is presented in [10] – it introduces TSO behaviors lazily by iterative
refinement, and while it is not complete, it should eventually find all errors.

Other Methods In [30], the SPARC hierarchy of memory models (TSO, PSO,
RMO) is modeled using encoding from assembly to Murϕ [17]. In [22] an explicit
state model checker for C# programs (supporting subset of C#/.NET bytecode)



which uses the .NET memory model is presented. The verifier first verifies pro-
gram under SC and then it explores additional runs allowed under the .NET
memory model. The implementation of the exploration algorithm uses a list of
delayed instructions to implement instruction reordering. The work [15] presents
verification of (potentially infinite state space) programs under TSO and PSO
(with bounded store buffers) using predicate abstraction.

A completely different approach is taken in [36]. This work introduces a
separation logic GPS, which allows proving properties about programs using (a
fragment of) the C11 memory model. That is, this work is intended for manual
proving of properties of parallel programs, not for automatic verification. The
memory model is not complete; it lacks relaxed and consume-release accesses.
Another fragment of the C11 memory model is targeted by the RSL separation
logic introduced in [37].

6 Conclusion

We showed that by careful design of simulation of relaxed memory behaviour
we can use the standard model checker supporting only the sequential consis-
tency to efficiently detect relaxed memory errors in programs that are otherwise
correct under sequentially consistent memory. Moreover, according to our ex-
perimental evaluation, our explicit-state model checking approach outperforms
a state-of-the-art stateless model checker as well as bounded model checker,
which is actually quite an unexpected result. We also show that many of the
used benchmarks can be solved only by one or two of the three evaluated tools,
which highlights the importance of employing different approaches to analysis
of programs under relaxed memory. Finally, we show that for terminating pro-
grams, our approach is viable both with bounded and unbounded store buffer
size.
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