
Using Off-the-Shelf Exception Support Components
in C++ Verification

Vladimı́r Štill
Faculty of Informatics,

Masaryk University
Brno, Czech Republic

Email: xstill@fi.muni.cz

Petr Ročkai
Faculty of Informatics,

Masaryk University
Brno, Czech Republic

Email: xrockai@fi.muni.cz

Jiřı́ Barnat
Faculty of Informatics,

Masaryk University
Brno, Czech Republic

Email: barnat@fi.muni.cz

Abstract—An important step toward adoption of formal meth-
ods in software development is support for mainstream pro-
gramming languages. Unfortunately, these languages are often
rather complex and come with substantial standard libraries.
However, by choosing a suitable intermediate language, most of
the complexity can be delegated to existing execution-oriented
(as opposed to verification-oriented) compiler frontends and
standard library implementations. In this paper, we describe
how support for C++ exceptions can take advantage of the
same principle. Our work is based on DiVM, an LLVM-derived,
verification-friendly intermediate language.

Our implementation consists of 2 parts: an implementation of
the libunwind platform API which is linked to the program
under test and consists of 9 C functions. The other part is
a preprocessor for LLVM bitcode which prepares exception-
related metadata and replaces associated special-purpose LLVM
instructions.

Index Terms—Model Checking, Exceptions, C++, Unwinder

I. INTRODUCTION

Today, formal verification methods are not commonly used
in software development, even though they are superior to
traditional testing approaches in many respects. One particular
example is model checking, which can be used to control
non-determinism in programs, especially when it arises from
parallelism. Formal methods can also be used to extend testing
coverage (e.g. via systematic fault injection), verification of
liveness properties or verification of global safety properties
(such as global assertions). However, to make those advantages
actually available to software developers, verification tools
must be easy to integrate into existing workflows. If the use
of verification tools requires substantial effort (as compared
to testing), the costs associated with formal methods can
outweigh the savings they provide. This is especially true
for modern development processes (especially in commodity
software), where there is little time for a separate modeling
and design phases.

For this reason, both the academic and industrial commu-
nities [2] increasingly seek to develop and use tools which
work with mainstream programming languages. However,
support for these programming languages – especially when
compared to special-purpose modelling formalisms – brings

This work has been partially supported by the Czech Science Foundation
grant No. 15-08772S and by Red Hat, Inc.

new complexity to verification tools. Programs written in such
languages are usually more complex and on a lower level of
abstraction than models specifically built for analysis tools.
Additionally, many programming languages contain features
with no counterparts in a typical modeling language, such as
dynamic memory, run-time type information and introspection
(RTTI), exception handling, or template instantiation. More-
over, programs written in these languages usually make use
of extensive standard libraries. Therefore, the verifier either
has to include all of the language and library functionality as
primitives, or it has to provide an implementation which is
added to the verified program just like a traditional library.

The paper is structured as follows: the remainder of Sec-
tion I gives motivation, context and contribution of this work.
Section II describes the mechanisms that C++ implementations
typically use in order to support exceptions. The following
Section III then details how LLVM is interpreted in DIVINE
4, in particular the parts relevant to exception handling, such
as the stack layout. Section IV and Section V discuss the
new components: the LLVM transformation and the unwinder,
respectively. Section VI surveys the related work and finally,
in Section VII, we evaluate our approach and we summarise
our findings in Section VIII.

A. Motivation

In many cases, it is impractical to re-implement the entire
programming language and its support libraries. Verification
tools can, however, take advantage of existing compilers or
libraries to deal with some of the complexity. For example,
verification can be substantially simplified by translating the
source code into an intermediate representation (IR) using an
existing compiler frontend. If the compiler in question can
emit intermediate representation after it has been optimised,
the verification result is independent of the correctness of the
(complex and error-prone) optimiser: any problems introduced
by the optimiser will be caught by the verification tool.

In case of C++, a suitable frontend is the clang compiler,
which uses LLVM as its IR. Since LLVM can optimise the IR
and produce executable code on many platforms from a single
optimised IR file, the verification effort does not need to be
repeated for each target platform separately. Of course, the
code generator (which is comparatively simple when compared



to the platform-neutral optimiser) still needs to preserve the
semantics of the program – otherwise, it would invalidate the
verification result.

As an alternative to re-using finished, execution-oriented
components, one could only support a subset of a pro-
gramming language (i.e. exclude the parts that are hard to
support in a verification tool). However, this weakens the
case for supporting mainstream programming languages: it
prevents developers from verifying production code. This is
especially true for standard libraries, as programming without
them requires the programmer to implement everything from
scratch. Finally, the standard library is often implemented in
the programming language it is part of, and is therefore an-
other good candidate for sharing code with execution-oriented
implementations of the language. Unfortunately, upstream im-
plementations of standard libraries usually make extensive use
of advanced language features. Consequently, in order to re-
use existing standard library implementations, more complete
language support is required in the verifier.

Exceptions are among the features that are both widely used
(including by the standard library) and tricky to implement.
Their use is, however, also common outside of the standard
library: libraries like boost and application-level code of-
ten take advantage of this capability. This is natural, since
exceptions simplify error handling and usually require less
boilerplate code than any of the alternatives. Furthermore, even
though many C++ standard library implementations can be
built without exception support1, this change can significantly
affect its behaviour (and as such, validity of the verification
result). Finally, error handling paths, including exception prop-
agation, are an important target for analysis by verification
tools, as they are both hard to test by more conventional means
and likely to contain errors – this naturally arises from the fact
that their purpose is to handle unlikely side cases which can
be hard to accurately reproduce with testing. A model checker,
on the other hand, can take advantage of its built-in support
for non-determinism to rigorously explore error paths.2

B. Component Re-Use

Unfortunately, off-the-shelf components from execution-
oriented language kits do not provide a complete toolbox
that would allow verification tool developers to simply con-
centrate on verification. The difficulties roughly fall into two
categories: first, the components interact with each other and
with the system for which they were originally designed and
second, it is often not at all obvious which components are
suitable for re-use and which are not. When a component C

1There are cases where not using exceptions makes sense: if the end-user
code makes no use of them but the standard library is compiled with exception
support, the requisite metadata tables only serve to increase the size of the
compiled program.

2This is a form of fault injection. When using a model checker, it is only
necessary to modify the function where the error may arise (e.g. the malloc
function may be modified to return a NULL pointer non-deterministically).
The model checker will then take care of exploring all possible combinations
of succeeding and failing memory allocations in the program.

is re-used, all the interfaces it uses must be provided as well.
There are 3 basic ways in which this can be arranged:

1. re-use another component, D, which provides this inter-
face; this is only possible if all interfaces D uses are
already available or can be provided

2. modify component C to avoid its dependency on the
interface in question

3. re-implement the interface as a new, possibly tool- or
verification-specific component

C. Contribution

The main contribution of this paper is twofold: first, we
identify the components that are best re-used and those which
are best re-implemented and show that this decision crucially
depends on the underlying intermediate language. Second, we
provide implementations of the components which cannot be
re-used in a form that is easy to integrate into both existing
and future verification tools. One of the components works
as an LLVM transformation pass, and could be used with
any LLVM-based tool. The other component targets the DiVM
language [12] specifically, and will therefore only work with
tools which understand this language.3

The goal of this paper, especially in the context of our previ-
ous work on the topic of C++ exceptions in verification [14], is
to aid authors of verification tools to minimise costs and effort
associated with inclusion of exception support. Depending on
the characteristics of the tool, either the approach described
in [14] or the one in this paper might be more suitable.
Overall, in a verifier which can handle the DiVM language
or equivalent, the approach given in this paper is simpler to
implement and more robust. A more detailed comparison of
the two approaches is given in Section VII-B.

All source code related to this paper, along with more
detailed benchmark results and other supplementary material,
are available online under a permissive open-source licence.4

D. Implementation

Our primary implementation platform is the DIVINE model
checker [1]. The C++ support in DIVINE has several compo-
nents: first, DIVINE uses clang to translate C++ into LLVM
IR. As outlined above, the verifier does not need to han-
dle complex syntactical features of C++ this way. A few
verification-specific transformations are done on the LLVM IR
before it is converted into the DiVM language for execution in
DIVINE’s Virtual Machine. The VM executes instructions and
performs safety checks, such as bound checking. Alone, these
components provide basic support for C++. In order to support
features such as RTTI and exceptions, it is also necessary
to provide a runtime support library and an implementation
of the standard library. These libraries in turn rely on a C
standard library and on a threading library (pthreads on
POSIX compatible systems). Those libraries are provided by

3DiVM is a relatively small extension of the LLVM IR, therefore extending
tools which work with pure LLVM to also support DiVM may be quite easy.

4https://divine.fi.muni.cz/2017/exceptions



DiOS, a small, verification-oriented operating system which
runs inside DiVM.

As discussed above, building those libraries into the verifier
is impractical due to cost and time constraints. There is,
however, another important reason why these should be kept
out of the verification core: any extension of the verifier
increases risks of implementation errors, and the more com-
plex these extensions are, the higher are the associated risks.
Moreover, any such errors in the verifier can lead to incorrect
verification results. For this reason, DIVINE ships source code
implementing these libraries as separate modules; this source
code is later compiled into LLVM IR and linked to the verified
program. This way, the libraries are subject to the same error
checking as user code, and any errors in their implementation
that are exposed by the user program will be detected by the
verifier.

Additionally, whenever off-the-shelf components are re-
used, it is preferable to keep verification-specific changes at
minimum. The standard C library in DIVINE is based on
PDCLib, a small, portable, public domain C library. The
copy of PDCLib in DIVINE includes a few modifications
(the C library interfaces directly with the operating system
in many cases, therefore it is necessary to port it to work
with the verifier, much like it would be necessary to port it
to a new operating system). For threading support, DIVINE
ships with a custom implementation of the pthread library
(so far, no existing implementation of the pthread interface
which could be re-used has been identified). For C++ support,
libc++abi (the runtime library) and libc++ (the standard
library) are used. Both of these libraries are maintained by the
LLVM project and work on many Unix-like systems.

program.cpp clang program.bc LLVM

libc++abi program.o

libunwind linker

*program

Fig. 1. Components involved in exception support in the standard clang/LLVM
stack. Under the scheme proposed in this paper, the highlighted elements are
shared between verification and execution environments.

E. Components for Exception Support

Unlike other features of C++, exceptions are neither handled
by the standard or runtime libraries alone, nor delegated to
the C standard library (as C has no support for exceptions).
Instead, libc++abi provides exception support with the help
of a platform-specific unwinder library which is responsible
for stack introspection and unwinding (removal of stack frames
and transfer of control to exception-handling code). The inter-
action of these components is illustrated in Figure 1.

For this reason, DIVINE has to either provide an unwinder
implementation compatible with libc++abi, or modify

program.cpp clang program.bc transform

libc++abi

libunwind

preproc.bc

DiVM

valid?

Fig. 2. Components involved in exception support in the DIVINE 4 C++
verification stack. The solid-filled elements are re-used without modification
from the execution-oriented clang/LLVM stack (cf. Figure 1). The hatch-filled
components are the additions described in this paper.

libc++abi to use custom code for exception handling. In
DIVINE 3, the latter approach was used, as it was deemed
easier at the time [14]. However, while basic exception support
was easier to achieve this way, the approach also had its
disadvantages. First, the LLVM interpreter in DIVINE 3 had
special support for exception-related functionality. Second, the
libc++abi code for exception handling was replaced, which
had 2 important consequences: first, the replacement code
was not comprehensive enough5 and second, this meant that
the replaced part of libc++abi was not taken into account
during verification.

In this paper, we instead take the first approach: re-use
libc++abi in its entirety and provide the interfaces it
requires. Therefore, we have implemented the libunwind
interface used by libc++abi for stack unwinding and
an LLVM transformation which builds metadata tables that
libc++abi needs to decide which exceptions should be
caught, how they should be handled and which functions on
the stack need to perform cleanup actions. The situation is
illustrated in Figure 2.

Using the original libc++abi code means that all fea-
tures of the C++ exception system are fully supported and
verification results also cover the low-level exception support
code. That is, this portion of the code is identical in both
the bitcode which is verified and in the natively executing
program.6 Finally, the proposed design is easier to extend to
other programming languages.

F. Other Components in Use

In line with the principles outlined so far, the implemen-
tation of the C and C++ standard libraries (and the C++
runtime library) used in DIVINE are third party code with only
minimal modifications. The C standard library implementation
(PDCLib) consists of approximately 38 thousand lines of code,
while the C++ runtime library (libc++abi) and the C++
standard library (libc++) contain 8 and 12 thousand lines of
code, respectively.

5That is, some of the less frequently used features of C++ exceptions
were handled either incorrectly or not at all. That is to say, the size of
the libc++abi portion that would have needed to be re-implemented was
initially underestimated.

6Clearly, the libunwind implementation is different in those two envi-
ronments, and therefore correctness of the platform-specific implementation
of libunwind must be established separately.



Standard libraries inevitably contain platform-specific code,
and this is also true of the implementations bundled with
DIVINE. The modifications due to the porting effort were,
however, quite minimal, since DiOS already provides a very
POSIX-like interface. The C library was, unsurprisingly, af-
fected the most: changes in memory allocation, program
startup- and exit-related functions and in handling of the
errno variable were required. In libc++, however, the
changes were limited to platform configuration macros and
the only change in libc++abi was a DiOS-specific tweak
in allocation of thread-local storage for exception handling.

Since user programs and libraries alike rely on the POSIX
threading API (also known as pthread), this API is provided
by DiOS and is implemented in about 2000 lines of C++. The
libunwind implementation introduced in this paper brings
in additional 350 lines of code (the implementation is done in
exception-free C++). Likewise, the C library and everything
above also depends on low-level filesystem access routines
provided by the operating system. In DiOS, this IO and
filesystem layer (VFS7) is implemented in about 5500 lines of
C++ code and uses exceptions heavily for error propagation.

So far, all the components mentioned in this section are
linked with the user program to form the final bitcode file for
verification. For comparison, the verification core of DIVINE
(the DiVM evaluator, memory management and the verifica-
tion algorithm), amounts to roughly 6 thousand lines of C++.
Finally, there is about 2500 lines of code which implement
various transformations on the LLVM bitcode. Out of these
2500 lines, less than 300 are part of the exception-related
extension described in this paper.

II. EXCEPTIONS IN C++

Throwing an exception requires removal of all the stack
frames8 between the throwing and catching function from the
stack (unwinding). Therefore, exception handling is closely
tied to the particular platform and is described by ABI9 for
the platform. Commonly, exception handling is split into two
parts, one which is tied to the platform (the unwinder library
which handles stack unwinding) and one which is tied to the
language and provided by the language’s runtime library.10

These two parts cooperate in order to provide exception
handling for a given language; however, this communication
is not standardised in any cross-platform fashion. For this
reason, we will now focus on zero-cost exceptions based on the

7Short for Virtual File System, since in a verification environment, the
system under test must not access the real filesystem or any other part of the
outside environment.

8The execution stack of a (C++) program consists of stack frames, each
holding context of a single entry into some function. It contains local variables,
a return address and register values which need to be restored upon return.

9Application Binary Interface, a low-level interface between program
components on a given platform.

10There are many implementations of the C++ runtime library, which,
besides exception support code, provides additional features such as RTTI.
Each implementation is usually tied to a particular C++ standard library.
Commonly used implementations on Unix-like systems are libsupc++,
which comes with libstdc++ and the GCC compiler, and libc++abi,
which is tied to libc++ used by some builds of clang and by DIVINE.

Itanium ABI, an approach which is used across various Unix-
like systems on x86 and x86_64 processor architectures and
is the preferred basis for LLVM exceptions. Nevertheless, it is
possible to generalize our results to other implementations.

A. Zero-Cost Exceptions

The so-called zero-cost exceptions are designed to incur no
overhead during normal execution, at the expense of relatively
costly mechanism for throwing exceptions. This in particular
means that no checkpointing is possible. Instead, when an
exception is thrown, the exception support library, with the
help of unwind tables, finds an appropriate handler for the
exception and uses the unwinder to manipulate the stack so
that this handler can be executed. The search for the handler
is driven by a personality function, which is provided by the
implementation of the particular programming language.

The personality function is responsible for deciding which
handler should execute (the handler selection can be complex
and language-specific). In general, there are two types of han-
dlers, cleanup handlers, which are used to clean up lexically
scoped variables (and call their destructors, as appropriate) and
catch handlers, which contain dedicated exception-handling
code. The latter typically arise from catch blocks. Another
major difference between those two types of handlers is that
catch handlers stop the propagation of the exception, while
cleanup handlers let propagation continue after the cleanup is
performed. While cleanup handlers are usually run uncondi-
tionally, the catch handler to be executed, if any, is determined
by the personality function.11 In C++, the personality function
selects the closest catch statement which matches the thrown
type (the match is determined dynamically, using RTTI). The
personality function consults the unwind tables, in particular
their language-specific data area (LSDA), to find information
about the relevant catch handlers.

When an exception is thrown, the runtime library of the
language creates an exception object and passes it to the
unwinder library. The actual stack unwinding is, on platforms
which build on the Itanium ABI, performed in two phases.
First, the stack is inspected (without modification) in search
for a catch handler. Each stack frame is examined by the
relevant personality function.12 If an appropriate catch handler
is found in this phase, unwinding continues with a second
phase; otherwise, an unwinder error is reported back to the
throwing function. Unwinder errors usually cause program
termination. In the second phase, the stack is examined again,
and a personality function is invoked again for each frame. In
this phase, cleanup handlers come into play. If any handler is
found (cleanup or catch), this fact is indicated to the unwinder,
which performs the actual unwinding to the flagged frame.
Once the control is transferred to the handler, it can either
perform cleanup and resume propagation of the exception, or,

11In fact, the personality function can also decide to skip cleanup handlers,
but this is not common.

12Different personality functions can be called for different frames, for
example if the program consists of code written in different languages with
exception support.



if it is a catch handler, end the propagation of the exception.
If exception propagation is resumed, the unwinder continues
performing phase 2 from the point of the last executed handler.
This is facilitated by storing the state of the unwinder within
the exception object.

B. Unwind Tables

As mentioned in Section II-A, both the unwinder library and
the language runtime depend on unwind tables for their work.
The unwinder uses these tables to get information about stack
layout in order to be able to unwind frames from it, and for
detection which personality function corresponds to a frame.
The personality function then uses the language-specific data
area (LSDA) of these tables in its decision process.

While the unwinder part of the tables is unwinder- and
platform-specific (it depends on stack layout), the LSDA is
platform- and language-specific. For these reasons, unwind
tables are not present in the LLVM IR; instead, they are gener-
ated by the appropriate code generator for any given platform,
based on information in the landingpad instructions, and
the personality attribute of functions. On Unix-like systems,
the unwind tables are in the DWARF13 format.

III. EXECUTION OF LLVM PROGRAMS

In this section, we will look at how LLVM bitcode is
executed by a model checker and how this execution is
affected by addition of exception support. Unlike previous
approaches, the technique described in this paper does not
require any exception-specific intrinsic functions or hypercalls
to be supported by the verifier. The exception-specific LLVM
instructions can be implemented in the simplest possible way:
invoke becomes equivalent to a call instruction followed
by an unconditional branch. The landingpad instruction
can be simply ignored by the verifier and resume instruc-
tions and calls of the llvm.eh.typeid.for intrinsic are
both removed by the transformation described in Section IV.
Moreover, the metadata required by libc++abi are likewise
generated by the LLVM transformation and this process is
completely transparent to the verifier.

In addition to support for LLVM, the unwinder (described
in more detail in Section V) requires the ability to traverse
and manipulate the stack and read and write LLVM registers
associated with a given stack frame. Finally, it needs access
to a representation of the bitcode for a given function. All
those abilities are part of the DiVM specification [12] and are
generally useful, regardless of their role in exception support.

The DiVM implementation in DIVINE 4 handles execution
of LLVM instructions, LLVM intrinsic functions and DiVM-
specific hypercalls.14 Hypercalls exist to allocate memory,
perform nondeterministic choice or to set DiVM’s control

13DWARF is a standard for debugging information designed for use with
ELF executables. It is used on most modern Unix-like systems.

14Intrinsic functions are provided by LLVM as a light-weight alternative to
new instructions. Such functions are recognized and translated by LLVM itself,
as opposed to “normal” functions that come from libraries or the program.
Likewise, DiVM provides hypercalls, which are functions that are, in addition
to LLVM intrinsics, recognized by DiVM.

registers (which contain, among other, the pointer to the
currently executing stack frame). Additionally, DiVM performs
safety checks, such as memory bound checking, and detects
use of uninitialised values. However, DiVM hypercalls are
intentionally low-level and simple and do not provide any
high-level functionality, such as threading or standard C library
functionality. Instead, those are provided by the DIVINE
Operating System (DiOS) and the regular C and C++ standard
libraries.

The most important purpose of DiOS is to provide threading
support. To this end, DiOS provides a scheduler, which is
responsible for keeping track of threads and their stacks
and for (nondeterministically) deciding which thread should
execute next. This scheduler is invoked repeatedly by the
verifier to construct the state space. The scheduler fully
determines the behaviour (or even presence) of concurrency
in the verified program: while DiOS provides asynchronous,
preemptive parallelism typical of modern operating systems,
it is also possible to implement cooperative or synchronous
schedulers instead.

A. Stack Layout and Control Registers

A DiVM program can have multiple stacks, but only one of
them can be active at any given time (a pointer to the active
stack is kept in a DiVM control register). The active stack
is normally either the kernel stack or the stack that belongs
to the active thread which was selected by the scheduler.
Switching of stacks (and program counters) is performed by
the control hypercall which manipulates DiVM control
registers.

Traditionally, stack is represented as a continuous block of
memory which contains an activation frame for each function
call. In DiVM, the stack is not continuous; instead, it is a
singly-linked list of activation frames, each of which points
to its caller. This has multiple advantages: first, it is easy to
create a stack frame for a function, for example when DiOS
needs to create a new thread; additionally, the linked-list-
organized stack is a natural match for the graph representation
of memory which DiVM mandates, and therefore can be saved
more efficiently [12]. Additionally, this way the stack may
be nonlinear, and the unwinder can use this feature to safely
transfer control to a cleanup block while the unwinder frame
is still on the stack. Later, the handler can return control to the
unwinder frame and the unwinder can continue its execution.
This would be impossible with a continuous stack since
cleanup code is allowed to call arbitrary functions and frames
of those functions would overwrite the frame of the unwinder.
For this reason, on traditional platforms, the unwinder needs
to store its entire state in the exception object, while in DiVM,
it can simply retain its own activation frame. An illustration
of how the stack looks while the unwinder is active is shown
in Figure 3.

IV. THE LLVM TRANSFORMATION

The C++ runtime library (libc++abi in our case), needs
access to the LSDA section of unwind tables (a pointer



Unwinder Stack

VM registers

Program Stack

... frame PC ...

close()

caller

pc = ...

...

_start()

caller = NULL

pc = call main

...

main()

caller

pc = call ~File()

...

exception

...

exception

exception class = 0x...

...

private_2

...

C++ exception object

~File()

caller

pc = call close

...

__cxa_throw()

caller

pc = call _Unwind_RaiseException

...

_Unwind_RaiseException()

caller

pc = ...

...

Fig. 3. In this figure we can see a stack of a program which is running cleanup
block in the main function. The cleanup block calls the destructor of File
structure, which in turn calls the close function (which is the current active
function). Furthermore, the cleanup handler can access the exception object
which contains a pointer to the stack of the unwinder. This pointer is used by
the implementation of the resume instruction to jump back to the unwinder
and continue phase 2 of the unwinding.

to this metadata section is accessible through the unwinder
interface). This section contains DWARF-encoded exception
tables, which are normally generated together with the exe-
cutable by the compiler backend (code generator). Unfortu-
nately, the generator of DWARF exception tables in LLVM
is closely tied to the machine code generator and cannot
be used to generate DWARF-formatted exception tables for
verification purposes. For this reason, we have implemented a
small LLVM transformation which processes the information
in landingpad instructions and generates LLVM constants
which contain the DWARF-formatted LSDA data. A reference
to one such constant is attached to each function in the bitcode
file.

To improve efficiency, LLVM does not directly use RTTI
type info pointers within the landing blocks to decide which
exception handlers should run. RTTI objects are special C++
objects which are used to identify types at runtime and
are emitted by the C++ frontend as constants. Due to the
complexities of C++ type system, matching RTTI types against

Function Description

SetGR Store a value into a general-purpose register
GetGR Read a value from a general-purpose register
SetIP Stora a value into the program counter
GetIP Read the value of the program counter
RaiseException Unwind the stack
Resume Continue unwinding the stack after a cleanup
DeleteException Delete an exception object
GetLSDA Obtain a pointer to the LSDA
GetRegionStart Obtain a base for relative code pointers

TABLE I
A LIST OF C FUNCTIONS PROVIDED BY LIBUNWIND . IN C, ALL THE

FUNCTIONS ARE PREFIXED WITH _UNWIND_ TO PREVENT NAME
CONFLICTS WITH USER CODE AND OTHER LIBRARIES (I.E. THE C NAME

OF SETGR IS _UNWIND_SETGR).

each other is expensive: a search in a pair of directed acyclic
graphs is required. Moreover, since the RTTI matching must
be already done in the personality function to decide which
frames to unwind, the personality can also pre-compute a
numerical index for the landing pad. This index, also called a
selector value is then used as a shortcut to run an appropriate
catch clause within the landing block, instead of re-doing
the expensive RTTI matching. Since the catch handler is
typically expressed in terms of typeinfo pointers, it needs to
efficiently obtain the selector value from a type info pointer.
For this purpose, LLVM provides a llvm.eh.typeid.for
intrinsic, which obtains (preferably at compile time) the selec-
tor value corresponding to a particular type info pointer.

Therefore, besides generating the LSDA data, the trans-
formation statically computes the values which correspond
to llvm.eh.typeid.for calls and substitutes them into
the bitcode. Since the purpose of llvm.eh.typeid.for
is to translate from RTTI pointers to selector values, it is only
required that the integer selector value chosen for a particular
RTTI object is in agreement with the personality function. In
our implementation, this is ensured by computing the selector
values statically for both the LSDA (which is where personal-
ity function obtains them) and for llvm.eh.typeid.for
at the same time.

Finally, the transformation rewrites all uses of the resume
instruction to ordinary calls to Resume, a function which is
part of libunwind (see also Table I).

V. THE UNWINDER

The unwinder in DIVINE is designed around the interface
described in the Itanium C++ ABI documentation,15 adopted
by multiple vendors and across multiple architectures. The
implementation is part of the runtime libraries shipped with
DIVINE.16 The unwinder builds upon a lower-level stack
access API which is provided by DiOS under sys/stack.h.

Due to the stack layout used in DiVM (a linked list of
frames, see also Section III-A), our unwinder is much simpler
than usual. The main task of unwinding is handled by the

15https://mentorembedded.github.io/cxx-abi/abi.html
16runtime/libc/functions/unwind.cpp



RaiseException function, which is called by the language
runtime when an exception is thrown. This function performs
the two phase handler lookup described in Section II-A and it
adheres to the Itanium ABI specification, with the following
exceptions:

i. it checks that an exception is not propagated out of
a function which has the nounwind attribute set, and
reports verification error if this is the case;

ii. if the exception is a C++ exception and there is no
handler for this exception type, the unwinder chooses
nondeterministically whether it should or should not
unwind the stack and invoke cleanup handlers.

The purpose of the first deviation is to check consistency of
exception annotations (arising, for example, from a nothrow
function attribute as available in GCC and in clang). The
second modification allows DIVINE to check both allowed
behaviours of uncaught exceptions in C++: the C++ standard
specifies that it is implementation-defined whether the stack
is unwound (and destructors invoked) when an exception is
not caught.17 Since the program may contain errors which
manifest only under one of these behaviours, it is useful to be
able to test both of them.

A. Low-Level Unwinding

The primary function of the unwinder described above is to
find exception handlers; for the actual unwinding of frames, it
uses a lower-level interface provided by DiOS. This interface
consists of two functions: __dios_jump, which performs a
non-local jump, possibly affecting both the program counter
and the active frame, and __dios_unwind, which removes
stack frames from a given stack. __dios_unwind is de-
signed in such a way that it can unwind any stack, not
only the one it is running on, and is not limited to the
topmost frames (effectively, it removes frames from the stack’s
singly-linked list, freeing all the memory allocated for local
variables that belong to the unlinked frames, along with the
frames themselves18). The unwinder identifies values as local
variables by looking at the instructions of the active function
– the results of alloca instructions are exactly the addresses
of local variables.

B. Unwinder Registers

When an exception is propagating, a personality function
has to be able to communicate with the code which handles the
exception. In C++, the communicated information includes the
address of the exception object and a selector value which is
later used by the handler. On most platforms, these values are
passed to the handler using registers, which are manipulated
using unwinder’s SetGR function. This function can either set
the register directly (if it is guaranteed not to be overwritten
before the control is transferred to the handler), or save the
value in a platform-specific way and make sure it is restored
before the handler is invoked.

17Section 15.5, paragraph 9 of the C++ standard [5]
18When a function returns normally (due to a ret instruction), DiVM takes

care of freeing the frame and its local variables (alloca memory).

In LLVM (and hence in DiVM), there is no suitable coun-
terpart to the general purpose registers of a CPU; instead, the
values set by the personality function should be made available
to the program in the return value of the landingpad
instruction. This, however, requires the knowledge of the
expected semantics of these registers. Currently, all users of
the unwinder are expected to use the same registers as the
C++ frontend in clang. That is, register 0 corresponds to the
exception object and register 1 corresponds to a type index.
This also directly maps to the return type of landingpad
instructions and therefore the register values can be saved
directly into the LLVM register corresponding to the particular
landingpad that is about to be executed.

Registers other than 0 and 1 are currently not supported.
In LLVM, in line with the above observation about clang and
C++, there is a convention that SetGR indices correspond to
indices into the result tuple of a landingpad instruction. As
long as this convention is preserved by a particular language
frontend and its corresponding runtime library (personality
function), it is very easy to extend our unwinder to support
this language. Finally, if a language frontend were instead to
emit calls to GetGR in the handler, registers of this type can
be stored in the unwinder Context directly.

C. Atomicity of the Unwinder

The unwinder performs rather complex operations and
therefore throwing an exception can create many states, even
when τ reduction [13] is enabled. However, many of these
states are not interesting from the point of view of verification,
as the operations performed by the unwinder are mostly
thread-local and only the exception handlers (and possibly
personality function) can perform globally visible actions. For
this reason, the unwinder uses DiVM’s atomic sections to hide
most of its complexity.

Since an atomic section is implemented as an interrupt
mask (i.e. a single flag indicating that an atomic section is
executing) in DiVM, it is necessary to correctly maintain the
state of this flag. In particular, it is required that the unwinder
behaves reasonably even if it is called when the program is
already in an atomic section. Consequently, care must be taken
to restore the state of the atomic mask when the unwinder
transfers control to a personality function or an exception
handler. When the unwinder is first called, it enters an atomic
section and saves the previous value of the interrupt mask. This
will be the value the flag will be restored to when a personality
function is first invoked. The mask is later re-acquired after
the personality function returns and it is restored once more
when the first handler is invoked. When the exception handler
resumes (using the resume instruction), the atomic section is
re-entered and its state saved so its state before the resume can
be restored again for the next call to a personality function.
This way, it is possible to safely throw an exception out of an
atomic section, provided that the atomic section is exception-
safe (that is, it has an exception handler which ends the atomic
section if an exception is propagated out of it).



D. longjmp Support

Using the low-level unwinder interface described in Sec-
tion V-A, it is easy to implement other mechanisms for
non-local transfer of control. The functions longjmp and
setjmp, specified as part of C89, are one such example.19

The setjmp function can be used to save part of the state of
the program, so that a later call to longjmp can restore the
stack to the state it was in when setjmp was called. This
way, longjmp can be used to remove multiple frames from
the stack. When longjmp is called, the program behaves as
if setjmp returned again, only this time it returns a different
value (provided as an argument to longjmp).

The DIVINE implementation of setjmp saves the program
counter and the frame pointer of the caller of setjmp. The
longjmp function then uses this saved state, along with
access to the text of the program, to set the return value of the
call instruction corresponding to the setjmp. Afterwards,
it unwinds the stack using the low-level stack access API from
sys/stack.h and transfers control to the instruction right
after the call to setjmp.

VI. RELATED WORK

Primarily, we have looked at existing tools which support
verification of C++ programs. Existence of an implementation
is, to a certain degree, an indication that a given approach is vi-
able in practice. We have, however, also looked at approaches
proposed in the literature which have no implementations (or
only a prototype) available.

A number of verification tools are based on LLVM and
therefore have some support for C++. LLBMC [15] and
NBIS [6] are LLVM-based bounded model checkers which
target mainly C and have no support for exceptions or the
C++ standard library. VVT [7] is a successor of NBIS which
uses either IC3 or bounded model checking and has limited
C++ support, but it does not support exceptions. Furthermore,
KLEE [3] and KLOVER [9] are LLVM-based tools for test
generation and symbolic execution. KLOVER targets C++ and
according to [9] has exception support, but it is not publicly
available. On the other hand, KLEE focuses primarily on C
and its C++ support is rather limited and it has no exception
support.

Both CBMC [4, 8] and ESBMC [11] bounded model check-
ers support C++ (but neither appears to support the standard
library) and they include support for exceptions. However,
in CBMC, the support for exceptions is limited to throwing
and catching fundamental types.20 In our survey of tools for
verification of C++ programs, ESBMC has by far the best
exception support: the latest version can deal with most, but

19Implemented in runtime/libc/includes/setjmp.h and
runtime/libc/functions/setjmp/.

20A simple test which throws and tries to catch an exception object crashes
CBCM 5.6.

not all21, types of exception handlers and even with exception
specifications. Finally, DIVINE 3 [14] also comes close to
full support for exceptions, but lacks support for exception
specifications. Overall, this survey suggests that all current
implementations of C++ exceptions in verification tools are
incomplete and confirms that using an existing, standards-
compliant implementation in a verification tool is indeed quite
desirable.

Finally, it is also possible to transform a C++ program
with exceptions into an equivalent program which only uses
more traditional control flow constructs. This approach was
taken in [10], with the goal of re-using existing analysis tools
without exception support. While this approach is applicable
to a wide array of verification tools, it is also incompatible
with re-use of existing exception-related runtime library code.
As such, it offers a very different set of tradeoffs than our
current approach. Moreover, the translation cost is far from
negligible, and also affects code that does not directly deal
with exceptions (i.e. it violates the zero-cost principle of
modern exception handling). Unfortunately, we were unable
to evaluate this approach, since there are no publicly available
tools which would implement it.

VII. EVALUATION

In order to asses the viability of our approach, we have
executed a set of benchmarks in various configurations of
DIVINE 4. The benchmarks were executed on quad-core Xeon
5130 clocked at 2 GHz and with 16GB of RAM. We have
measured the wall time, making all 4 cores available to the
verifier.

A. Benchmark Models

The set of models we have used for this comparison consists
of 831 model instances, out of which we picked the 794 that
do not contain errors. The reason for this is that the execution
time is much more variable when a given program contains
an error, since the model checking algorithm works on the fly,
stopping as soon as the error is discovered.

Majority of the valid models (777) are C++ programs of
varying complexity, while the 17 models in the svc-pthread
category are concurrent programs written in plain C with
pthreads. Since our implementation of the pthread API is done
in C++, the impact of exception support on verification of C
programs is also relevant. The “alg” category includes sequen-
tial algorithmic and data structure benchmarks, the “pv264”
category contains unit tests for student assignments in a C++
course, the “iv112” category contains unit tests for concurrent
data structures and other parallel programs (again assignment
problems in a C++ course), “libcxx” contains a selection of the
libc++ testsuite (with focus on exception support coverage),
“bricks” contains unit tests for various C++ helper classes,

21ESBMC 3.0 is unable to determine that an exception ought to be caught
when the catch clause specifies a type which is a virtual base class in a
diamond-shaped hierarchy and the object thrown is of the most-derived type
of the diamond. This suggests that ESBMC uses its own implementation of
RTTI support code, which is somewhat incomplete, compared to production
implementations.



category #mod time (D4) time (D3) states (D4) states (D3)

alg 9 3:52 3:51 543.3 k 543.3 k
pv264 13 1:34 1:32 183.0 k 183.0 k
iv112 11 25:58 25:57 3743 k 3743 k
libcxx 425 42:15 42:09 2182 k 2182 k
bricks 292 3:04:25 2:56:55 6271 k 6251 k
divine 3 6:20 6:18 1040 k 1040 k
cryptopals 3 0:01 0:01 1943 1943
llvm 12 36:36 36:27 3865 k 3865 k
svc-pthread 17 16:47 16:41 1685 k 1685 k
total 794 5:21:44 5:13:49 20.1 M 20.0 M

TABLE II
COMPARISON OF THE NEW EXCEPTION CODE WITH A DIVINE-3-STYLE

VERSION.

including concurrent data structures, “divine” contains unit
tests for a concurrent hashset implementation used in DIVINE,
“cryptopals” contains solutions of the cryptopals problem
set22, the “llvm” category contains programs from the LLVM
test-suite23 and finally, the “svc-pthread” category includes
pthread-based C programs from the SV-COMP benchmark
set. In most of the programs, it was assumed that malloc
and new never fail, with the notable exception of part of the
“bricks” category unit tests. The tests where new failures are
allowed are especially suitable for evaluating exception code,
in particular where multiple concurrent threads are running at
the time of the possible failure.

B. Comparison to Builtin Exception Support

In addition to the approach presented in this paper, we have
implemented the approach described in [14] in the context of
DIVINE 4. This allowed us to directly measure the penalty
associated with the present approach, which is more thorough
and less labour-intensive at the same time. Our expectation was
that this would translate to slower verification, since the off-
the-shelf code is more complex than the corresponding hand-
tailored version used in [14]. In line with this expectation, we
set the criterion of viability: we would consider a slowdown
of at most 10 % to be an acceptable price for the improved
verification fidelity, and convenience of implementation. Since
other resource consumption (especially memory) of verifica-
tion is typically proportional to state space size, we have used
the number of states explored as an additional metric. The
expected effect on the shape (and, by extension, size) of the
state space should be smaller than the effect on computation
time (most of the additional complexity is related to computing
a single transition). We believe that an acceptable penalty in
this metric would be about 2 % increase.

As can be seen in Table II, the time penalty on our chosen
model set is very acceptable – just shy of 2.6 % – and the
state space size is within 1 % of the older approach [14]. We
believe that this small penalty is well justified by the superior
verification properties of the new approach.

22http://cryptopals.com
23http://llvm.org/svn/llvm-project/test-suite/trunk/SingleSource/

Benchmarks/Shootout

category #mod time (D4) time (stub) states (D4)

alg 9 3:52 3:52 543.3 k
pv264 13 1:34 1:34 183.0 k
iv112 11 25:58 26:00 3743 k
libcxx 392 41:56 41:54 2179 k
bricks 192 35:30 35:21 2378 k
divine 3 6:20 6:19 1040 k
cryptopals 3 0:01 0:01 1943
llvm 12 36:36 36:28 3865 k
svc-pthread 17 16:47 16:43 1685 k
total 661 2:52:30 2:52:08 16.2 M

TABLE III
COMPARISON OF THE NEW EXCEPTION CODE AGAINST STUBBED

EXCEPTIONS. COMPARED TO TABLE II, IN THIS CASE 133 MODELS FAILED
DUE TO THE STUBS. STATE COUNTS ARE IDENTICAL FOR ALL MODELS.

C. Comparison to Stub Exceptions

The second alternative approach is to consider any thrown
exception an error, regardless of whether it is caught or
not. This can be achieved much more easily than real sup-
port for exceptions, since we can simply replace the entire
libunwind interface with stubs which raise an error and
refuse to continue. This approach only works for models which
do not actually throw any exceptions during their execution.
The results of this comparison are shown in Table III –
the verification time is nearly identical and the state spaces
are entirely so. This is in line with expectations: in those
models, catch blocks are present but never executed. Since
the proposed approach does not incur any overhead until an
exception is actually thrown, we would not expect a substantial
time difference.

D. Comparison to No Exceptions

Finally, the last alternative is to disable exception support
in the C++ frontend entirely. In clang, this is achieved by
compiling the source code with the -fno-exceptions flag.
In this case, the LLVM bitcode contains no exception-related
artefacts at all, but many programs fail to build. Additionally, a
number of programs in the “bricks” category contain exception
handlers for memory allocation errors24 and therefore exit
cleanly upon memory exhaustion. Even though some of those
programs can be compiled with -fno-exceptions, they
now contain an error (a null pointer dereference) which is
not present when they are compiled the standard way. Those
programs were therefore excluded from the comparison. The
summary of this comparison can be found in Table IV –
the time saved for models where -fno-exceptions is
applicable is again quite small, less than 13 %. In this case, the
difference is due to the changes in control flow of the resulting
LLVM bitcode. Since call is not a terminator instruction

24In this case, the handler is installed using std::set_terminate,
which is available even when -fno-exceptions is given. The situa-
tion would be similar if only parts of the program were compiled with
-fno-execptions. In particular, the problem is that the standard library,
if compiled with -fno-exceptions, cannot throw, and must therefore
behave differently in those scenarios, affecting the behaviour of the user
program.



category #mod time (D4) time (nxc) states

alg 1 0:24 0:23 34.2 k
pv264 1 0:00 0:00 57
iv112 10 23:58 22:06 3571 k
libcxx 393 41:57 40:44 2180 k
svc-pthread 17 16:47 15:42 1685 k
total 423 1:23:33 1:19:21 7504 k

TABLE IV
COMPARISON OF THE NEW EXCEPTION SUPPORT AGAINST A CASE WHERE

-FNO-EXCEPTIONS WAS USED TO COMPILE THE SOURCES AND
LIBRARIES. IN THIS CASE, IT WAS ONLY POSSIBLE TO VERIFY 423
MODELS FROM THE SET (I.E. 371 MODELS ARE MISSING FROM THE
COMPARISON). STATE COUNTS ARE IDENTICAL FOR ALL MODELS.

(unlike invoke), the local control flow in a function is
negatively affected by the presence of invoke instructions:
more branching is required, and this slows down the evaluator
in DiVM. While it is easy to see if a given program can
be compiled with -fno-exceptions, it is typically much
harder to ensure that its behaviour will be unchanged. For this
reason, we do not consider the time penalty in verification of
this type of programs a problem.

E. Re-usability

As outlined in Section I-F, the two components directly
involved in exception support are comparatively small and
well isolated. The LLVM transformation is fully re-usable with
any LLVM-based tool. The unwinder, on the other hand, relies
on the capabilities of DiVM. However, there is no need for
hypercalls specific to exception handling and therefore, the
implementation work is essentially transparent to DiVM. The
capabilities of DiVM required by the unwinder are limited to
the following: linked-list stack representation, runtime access
to the program bitcode and 2 hypercalls: __vm_control and
__vm_obj_free. More details about DiVM can be found
in [12].

Finally, adding support for a new type of exceptions is also
much simpler in this approach – no modifications to DiVM
(or any other host tool) are required: only the two components
described in this paper may need to be modified.

VIII. CONCLUSION

In this paper, we have discussed an approach to extending
an LLVM-based model checker with C++ exception support.
We have found that re-using an existing implementation of the
runtime support library is a viable approach to obtain com-
plete, standards-compliant exception support. A precondition
of this approach is that the verification tool is flexible enough
to make stack unwinding possible. The DiVM language, on
which the DIVINE model checker is based, has proven to be
a good match for this approach, due to its simple and explicit
stack representation, along with a suitable set of control flow
primitives.

We also performed a survey of tools based on partial or
complete reimplementations of C++ exception support rou-
tines and found that in each tool, at least one edge case is not

well supported. In contrast to this finding, with our approach,
all those edge cases are covered “for free”, that is, by the virtue
of re-using an existing, complete implementation. Contrary
to the prediction made in [14], we have found that with a
suitable target language, implementing a new unwinder can be
relatively simple. The unwinder implementation described in
this paper is only about 350 lines of C++ code, while it would
be impossible to implement without verifier modifications in
DIVINE 3. Therefore, we can conclude that with the advent
of the DiVM specification [12] and its implementation in DI-
VINE 4, re-implementing the libunwind API and re-using
libc++abi became a viable strategy to provide exception
support.

REFERENCES

[1] Jiřı́ Barnat, Luboš Brim, Vojtěch Havel, Jan Havlı́ček, Jan
Kriho, Milan Lenčo, Petr Ročkai, Vladimı́r Štill, and Jiřı́
Weiser. DiVinE 3.0 – an explicit-state model checker for
multithreaded C & C++ programs. In CAV, volume 8044
of LNCS, pages 863–868. Springer, 2013.

[2] Dirk Beyer. Reliable and Reproducible Competition
Results with BenchExec and Witnesses Report on SV-
COMP 2016. In TACAS, pages 887–904. Springer,
2016. ISBN 978-3-662-49673-2. doi: 10.1007/
978-3-662-49674-9 55.

[3] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In 8th
USENIX Symposium on Operating Systems Design and
Implementation, (OSDI 2008), pages 209–224. USENIX
Association, 2008.

[4] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A
Tool for Checking ANSI-C Programs. In TACAS, pages
168–176. Springer, 2004. ISBN 978-3-540-24730-2. doi:
10.1007/978-3-540-24730-2 15.

[5] ISO C++ Standards Committee. Standard for Program-
ming Language C++. Working Draft N4296. Technical
report, ISO IEC JTC1/SC22/WG21, 2014.

[6] Henning Günther and Georg Weissenbacher. Incremental
Bounded Software Model Checking. In SPIN. ACM,
2014.

[7] Henning Günther, Alfons Laarman, and Georg Weis-
senbacher. Vienna verification tool: IC3 for parallel
software - (competition contribution). In TACAS, pages
954–957, 2016. doi: 10.1007/978-3-662-49674-9 69.

[8] Daniel Kroening and Michael Tautschnig. CBMC –
C bounded model checker. In TACAS, pages 389–
391. Springer, 2014. ISBN 978-3-642-54862-8. doi:
10.1007/978-3-642-54862-8 26.

[9] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan.
KLOVER: A Symbolic Execution and Automatic Test
Generation Tool for C++ Programs. In CAV, volume
6806 of LNCS, pages 609–615. Springer, 2011. ISBN
978-3-642-22109-5.

[10] Prakash Prabhu, Naoto Maeda, Gogul Balakrishnan,
Franjo Ivančić, and Aarti Gupta. Interprocedural excep-



tion analysis for C++. In ECOOP, volume 6813 of LNCS,
pages 583–608. Springer, 2011. ISBN 978-3-642-22654-
0.

[11] Mikhail Ramalho, Mauro Freitas, Felipe Sousa, Hendrio
Marques, Lucas Cordeiro, and Bernd Fischer. SMT-
Based Bounded Model Checking of C++ Programs. In
ECBS, pages 147–156. IEEE Computer Society, 2013.
ISBN 978-0-7695-4991-0.

[12] Petr Ročkai and Jiřı́ Barnat. DiVM: Model checking with
LLVM and graph memory. 2017. Preliminary version.

[13] Petr Ročkai, Jiřı́ Barnat, and Luboš Brim. Improved state
space reductions for LTL model checking of C & C++
programs. In NASA Formal Methods, volume 7871 of
LNCS, pages 1–15. Springer, 2013.

[14] Petr Ročkai, Jiřı́ Barnat, and Luboš Brim. Model check-
ing C++ programs with exceptions. Science of Computer
Programming, 128:68 – 85, 2016.

[15] Carsten Sinz, Florian Merz, and Stephan Falke. Llbmc:
A bounded model checker for LLVM ’s intermediate
representation. In Cormac Flanagan and Barbara König,
editors, Tools and Algorithms for the Construction and
Analysis of Systems, volume 7214 of Lecture Notes
in Computer Science, pages 542–544. Springer Berlin
Heidelberg, 2012. ISBN 978-3-642-28755-8. doi:
10.1007/978-3-642-28756-5\ 44.


