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Abstract
This work focuses on application of LLVM transformations as a preprocessing
step for verification of real-world C and C++ programs using the explicit-
state model checker DIVINE [6]. We demonstrate that LLVM transformations
can be used for extension of verifier capabilities and for reduction of the state
space size.

In the case of extension of verifier capabitilies, the main focus is on
verification under relaxed memory models, this is a continuation of the work
started in [42]. We extend the previous transformation to enable verification
of wider range of safety properties, support code with atomic instructions,
support more relaxed memory models than total store order, and improve
state space size of the programs which use this transformation. The final
implementation of this transformation is evaluated and compared with the
previous implementation.

For state space reductions, we propose the concept of optimizations which
preserve verified property, evaluate some of these optimizations, and propose
additional transformations which can be implemented as future work.
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Chapter 1

Introduction

With modern multi-core CPUs, multi-threaded programs are increasingly
common and therefore the need to show their correctness, or at least find
bugs in them is increasing. The problem is that testing of multi-threaded
programs lacks a well established deterministic procedure. While common
techniques, such as unit testing, can be applied to parallel programs, they are
unable to reliably find bugs caused by data races.

The underlying reason is that data races occur when actions performed
by threads in parallel are interleaved in an unexpected order which exposes
the problem. This interleaving might be, however, quite rare and therefore it
is often hard to reveal that particular erroneous interleaving during testing.
Furthermore, even if the bug can be triggered by testing, it is often hard
to reproduce and debug it, as common debugging approaches, including
debuggers and logging often interfere with testing as they can hide the
particular erroneous run.

1.1 Explicit-state Model Checking

Formal methods, explicit-state model checking using automata-base ap-
proach [17] in particular, can help in this regard. Explicit-state model checking
allows us to explore all possible interleavings of parallel programs and there-
fore uncover even extremely rare data races. While pure explicit-state model
checking requires programs to be closed (not have any inputs) it is still very
helpful as it can be applied for example to unit tests and this combination
yields deterministic testing procedure for parallel unit tests. Furthermore,
there are techniques, such as control-explicit-data-symbolic model checking [3],
which allow application of model checking to parallel programs with inputs.

On the other hand, formal methods come with a new set of issues, such
as their computational complexity and their usability for software developer.
For a verification tool to be useful to software developers, it is important to
minimize any extra effort the developers have to put into usage of a such tool.
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2 CHAPTER 1. INTRODUCTION

This effort was large with older generations of verifiers such as SPIN [18] and
LTSmin [21], which required manual translation of the verified program into
a modeling language such as ProMeLa. With the new generation of verifiers,
such as DIVINE 3 [6], CBMC [22], and LLBMC [38], special-purpose languages
for verification are no longer required. These tools support direct verification
of widely used programming languages such as C and C++, either directly or
using the LLVM intermediate representation [24] (an intermediate language
which can be used in translation of many programming languages, including
C and C++).

LLVM IR in particular is becoming input language of choice for many veri-
fication tools. This assembly-like language is simpler to work with than higher
level languages, yet it maintains platform independence, compact instruction
set, and useful abstractions such as type information and unbounded number
of registers, which make it easier to analyze than machine code. Furthermore,
LLVM IR comes with a large library for manipulations and optimizations.

With this approach, real-world code can be verified. The ultimate goal is
to be able to verify a program without any modifications to it. This is also the
goal for DIVINE [6], a well established explicit-state model checker, which aims
primarily at verification of unmodified C and C++ programs with parallelism
using LLVM as an intermediate representation. DIVINE aims to have full
support of language features for C++, including, for example, exception
handling. Furthermore, DIVINE provides near complete implementation of C
and C++ standard library, including features of newest C++14 standard and
the pthread threading library [19]. In this way, DIVINE can often be directly
applied to verification of real-world code, provided it does not use inputs
or platform-specific features, such as calls into the kernel of the operating
system. DIVINE is able to verify wide range of properties, such as memory
and assertion safety, absence of memory leaks, and liveness properties defined
by linear temporal logic specification.

The other problem for practical model checking is state space explosion.
The state space of all runs of a parallel program can be large, and therefore, the
resources to explore it can be vastly larger than resources needed to execute
the program directly. This problem is even more pronounced with verification
of real-world programs, as the implemnetation details often abstracted away
in translation to modelling languages are still present in them. To make
verification of real-world programs feasible in more cases, DIVINE employs
advanced state space reductions, including τ+ and heap symmetry reductions
which eliminate a large number of unnecessary interleavings [34], and tree
compression to achieve memory-efficient storage of state space [36]. DIVINE
also supports parallel and distributed verification [9, 4].
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1.2 Relaxed Memory Models

One common source of bugs in parallel programs is the fact that modern CPUs
use relaxed memory models. With relaxed memory models, the visibility
of an update to a shared memory location need not be visible immediately
to other threads and it might be reordered with other updates to different
memory locations. This adds yet another level of difficulty to the already
difficult task of programming parallel programs: memory models are hard
to reason about and it is often hard to specify the desired behaviour in the
programming language in question. While hardware commonly has support to
ensure particular ordering of memory operations, this is often not supported
by programming languages, such as older versions of C and C++. With newer
programming languages, such as C11 and C++11, it is possible to specify
the behaviour of the program precisely [13, 14]. Nevertheless, this is still a
difficult problem, especially for high-performance tasks when it is desirable to
use the weakest synchronization which is sufficient for correctness. For these
reasons, it is important to be able to verify programs under relaxed memory
models. This is, however, not the case for many verifiers, even if they aim at
verification of real-world programs.

To further complicate the matter of relaxed memory models, the actual
memory models implemented in hardware differ with CPU architectures,
vendors, or even particular models of CPUs and detailed descriptions are
usually not publicly available. For these reasons, it would not be practical and
feasible to verify programs with regard to a particular implementation of real-
world memory model. To allow analysis of programs under relaxed memory
models, theoretical memory models were proposed, namely Total Store Order
(TSO) [39] and Partial Store Order (PSO) [39]. Also, programming language
standards, such as C++11 and LLVM, define memory models for programs
written in the particular language [14, 29]. These theoretical memory models
are usually described as constraints to allowed reordering of instructions which
manipulate memory.

In those theoretical models, an update may be deferred for an infinite
amount of time. Therefore, even a finite state program that is instrumented
with a possibly infinite delay of an update may exhibit an infinite state space.
It has been proven that for such an instrumented program, the problem of
reachability of a particular system configuration is decidable, but the problem
of repeated reachability of a given system configuration is not [2].

A variety of ways to verify programs under relaxed memory models were
proposed. The idea of using model checking was first discussed in the context
of the Murϕ model checker, which was used to generate all possible outcomes
of a small, assembly-language, multiprocessor program for a given memory
model [15, 27]. A technique which represents TSO store buffers with finite
automata to represent possibly infinite set of its contents was introduced
in [26] and later extended in [25]. In DIVINE, relaxed memory models were
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first discussed in the context of the DVE modelling language [5].
More recently, a proof-of-concept support for under-approximation of Total

Store Order relaxed memory model for C and C++ programs was introduced
in [42]. This support is based on an LLVM transformation which automatically
instruments the program-to-be-verified with store buffers, and this enriched
program is verified with DIVINE. The main limitation of the transformation
proposed in [42] is that it does not fully support LLVM atomic instructions
with other than sequential consistency ordering and it supports only the TSO
memory model.

1.3 Aims and Contributions of This Work
This work focuses on the use of LLVM transformations as a preprocessing
step for verification of real-world parallel C and C++ programs using the
DIVINE model checker. We demonstrate that this technique is both viable
and useful, as it can aid verification of these programs. More specifically,
the focus is in two areas, the first one is extension of verifiers capabilities,
most importantly enriching input programs with weak memory models such
that these can be verified using an unmodified model checker which assumes
sequential consistency. This is a significant extension of the work presented
in [42]. The new memory model instrumentation has full support for the LLVM
memory model with atomic instructions, it supports verification under more
relaxed memory models than total store order and it supports full range of
properties supported by DIVINE. We also show a use of LLVM transformations
on the case of verification of SV-COMP [12] benchmarks with DIVINE [41].

The other area is state space size reduction aided by LLVM transformations
which do not change the semantics of the input program. In this area, we
propose a few transformations which can be used with DIVINE.

While the techniques presented here are designed primarily for DIVINE,
their nature as LLVM transformation allows their application for other model
checkers, or even verifiers using different principles, provided they use LLVM
as an input language and they have support for features required by these
transformations.

The structure of the thesis is the following: first, in Chapter 2 we present
LLVM intermediate representation and LLVM memory model and in Chapter 3
we present the architecture of DIVINE. Chapter 4 demonstrates how LLVM
transformations can be used to extend the capabilities of a model checker,
in particular by adding weak memory support into DIVINE as an LLVM
transformation and explores the usage of LLVM transformations for state
space reductions. Chapter 5 presents an experimental evaluation of the
proposed techniques and finally, Chapter 6 concludes this work.



Chapter 2

LLVM

“LLVM is a Static Single Assignment (SSA) based representation
that provides type safety, low-level operations, flexibility, and the
capability of representing ‘all’ high-level languages cleanly. It is
the common code representation used throughout all phases of the
LLVM compilation strategy.”

— LLVM Language Reference Manual [31]

LLVM [24] was originally introduced in [23] as an infrastructure for opti-
mization. Today, LLVM is presented as compiler infrastructure, it provides
programming-language-and-platform-independent tools for optimization and
support for code generation for many platforms. It also defines intermedi-
ate representation — LLVM IR — a static-single-assignment-based low-level
language, and a library which can be used to manipulate this intermediate
representation. The name LLVM itself is often used both for the complete
infrastructure as well as for LLVM IR.

LLVM IR can be represented in three ways: a human readable assembly
(.ll file), a compact serialized bitcode (.bc file), or as in-memory C++ objects
which can be manipulated by LLVM libraries and read from and serialized to
both the other forms.

2.1 LLVM IR basics

LLVM IR human-readable representation is similar to assembly languages, but
it is typed and more verbose. In this section, we will shortly describe relevant
part of this human-readable LLVM representation as well as a basic structure
of LLVM IR. Through the whole work, we will use typewriter-style font
to denote a fragment of code in some programming language, most often in
LLVM IR or C++. We will also use the same font for instruction and function
names.

5



6 CHAPTER 2. LLVM

LLVM IR has two basic kinds of identifiers: global identifiers, used for global
variables and functions (their names begin with @), and local identifiers, such
as register names, types and labels (their names begin with %). The identifiers
can be either named or unnamed, unnamed identifiers are represented using
unsigned numerical values.

Modules and Functions

LLVM programs consist of modules. A module represents a compilation unit of
the input program or a result of the LLVM linker. Modules contain functions,
global variables, symbol table entries, and metadata.

A function contains a header (which defines a name, the number and
type of parameters and function attributes) and a body which consists of
basic blocks. Basic block is a continuous sequence of instructions with no
branching inside, terminated by a so-called terminator instruction, which is
an instruction which transfers control flow to another basic block (branching
instruction) or exits the function (in the case of ret and resume). Each basic
block has a label which serves as a name of the basic block. Only labels can
be targets of branch instructions. Values in a function are held in registers
which are in SSA form (they are assigned only once, at their declaration) and
there is an unlimited number of them.

Most LLVM instructions operate on registers, memory manipulation is
possible using only four instructions: load, store, atomicrmw, and cmpxchg.
The load instruction loads a value of a given type from a memory location
given by its pointer argument and the store instruction stores a value to a
memory location given by its pointer argument. atomicrmw and cmpxchg are
atomic instructions, they perform atomic read-modify-write and compare-and-
swap. More information about these instructions can be found in Section 2.4.

Since LLVM registers are in SSA form and their address cannot be taken,
they are not suitable for representation of local variables. To represent these
variables, LLVM uses alloca instruction. alloca instruction takes a size and
a type and returns a pointer to a memory location of given size, which will be
automatically freed on function exit. Usually alloca is implemented using a
stack when LLVM is compiled to runnable binary.

Finally, again as a consequence of SSA form, LLVM IR includes ϕ-nodes
represented by the phi instruction, a special instruction which merges values
from different basic blocks. phi instructions must be at the beginning of a
basic block.

Types

LLVM is a typed language; there are primitive types, such as integral types
with different bit widths (for example i32 is a 32 bit integer, i1 is a boolean
value), floating point types (float, double), and pointer types (denoted in
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the same way as in C, for example i32* is pointer to a 32 bit integer). Apart
from primitive types, LLVM has arrays (for example [4 x i32] is an array of
4 integers), and structures (for example { i32, i8* } is a tuple of an integer
and a pointer). Furthermore, LLVM has named types and additional types,
such as vector types, which are not necessary for the understanding of this
work.

There are no implicit casts in LLVM, instead, a variety of of casting instruc-
tions is provided, namely bitcast for casting which preserves representation,
inttoptr and ptrtoint to cast integers to and from pointers with same size,
and trunc, zext, and sext for integer casts to smaller, respectively larger
data types.

Metadata

LLVM modules can also contain metadata. Metadata are non-essential data
which include additional information, for example for the compiler, optimizer
or code generator. An important example of metadata are debugging infor-
mations. Metadata can be bound to LLVM instructions and functions and
their names are prefixed with !.

2.2 LLVM Compilation Process

LLVM itself is not a complete compiler as it lacks support for translation
from a higher-level programming language into LLVM IR. This translation is
done by a frontend, such as Clang, which is a C/C++/Objective-C compiler
released together with LLVM, or DragonEgg which integrates LLVM with GCC
parsers and allows processing of Ada, Fortran, and others.

After the frontend generates LLVM IR, LLVM can be used to run optimiza-
tions on this IR. These optimizations are organized into passes; each of the
passes performs a single optimization or code analysis task, such as constant
propagation or inlining. LLVM passes are usually run directly by the compiler,
but they can be also executed on serialized LLVM IR using the opt binary
which comes with LLVM. Optimization passes are written in C++ using LLVM
libraries.

Finally, the optimized IR has to be translated into a platform-specific
assembler. This is done by a code generator, which is part of LLVM. LLVM
comes with code generators for many platforms, including x86, x86_64, ARM,
and PowerPC. LLVM also comes with infrastructure for writing code generators
for other platforms.



8 CHAPTER 2. LLVM

2.3 Exception Handling

Exception handling in LLVM [30] is based on Itanium ABI zero-cost exception
handling. This means that exception handling does not incur any overhead
(such as checkpoint creation) when entering try blocks. Instead, all the work
is done at the time exception is thrown, that is, exception handling is zero-
cost until the exception is actually used.

The concrete implementation of exception handling is platform dependent
and as such cannot be completely described in LLVM. It usually consists
of exception handling tables compiled into the binary, an unwinder library
provided by the operating system, and a language-dependent way of throwing
and catching exceptions. The exception handling tables and most of the
unwinder interface is not exposed into LLVM IR as it is filled in by the
backend for the particular platform. Nevertheless, there must be information
in LLVM IR which allows generation of this backend-specific data. For this
reason, LLVM has three exception-handling-related instructions: invoke,
landingpad, and resume.

landingpad is used at the beginning of an exception handling block (it can be
preceded only by phi instructions). Its return value is a platform-and-
language-specific description of the exception which is being propagated.
For C++, this is a tuple containing a pointer to the exception and
a selector which is an integral value corresponding to the type of the
exception that is used in the exception catching code. The basic block
which contains the landingpad instruction will be referred to as landing
block.1

The landingpad instruction specifies which exceptions it can catch.
It can have multiple clauses and each clause is either a catch clause,
meaning the landingpad should be used for exceptions of a type this
clause specifies, or a filter clause, meaning the landingpad should be
entered if the type of the exception does not match any of the types in
the clause. The type of the exception is determined dynamically, and
therefore clauses contain runtime type information objects. Furthermore,
a landingpad can be denoted as cleanup, meaning it should be entered
even if no matching clause is found.

As the matching clause is determined at the runtime, the code in a
landing block has to be able to determine which of the possible clauses
(or cleanup flag) fired. For this reason, the return value of a landingpad
instruction is determined using a personality function. Personality
function is a language-specific function which is called when the exception

1In LLVM documentation this block is referred to as landing pad, however, we will use
the naming introduced in [35] to avoid confusion between landingpad as an instruction and
landing pad as a basic block which contains this instruction.
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is thrown, or by the stack unwinder. For C++ and Clang, the personality
function is __gxx_personality_v0 and it returns a pointer to the
exception and an integral selector which uniquely determines which
catch block of the original C++ code should fire.

invoke instruction works similarly to the call instruction; it can be used to
call a function in such a way that if the function throws an exception,
this exception will be handled by a dedicated basic block. Unlike call,
invoke is a terminator instruction, it has to be last in a basic block.
Apart from the function to call and its parameters, invoke also takes
two basic block labels, one to be used when the function returns normally
and one to be used on exception propagation; the second one must be a
label of a landing block.

resume is used to resume propagation of an exception which was earlier
intercepted by an invoke–landingpad combination. The parameters
are the same as returned by the landingpad.

It is important to note that LLVM does not have any instruction for
throwing of an exceptions, this is left to the frontend to be done in language-
dependent way. In C++ throwing is done by a call to __cxa_throw which
will initiate the stack unwinding in cooperation with the unwinder library.
Similarly, allocation and catching of exceptions are left to be provided by the
frontend.

2.4 Memory Model and Atomic Instructions
LLVM has support for atomic instructions with well-defined behaviour in multi-
threaded programs [29]. LLVM’s atomic instructions are built so that they can
provide the functionality required by the C++11 atomic operations library,
as well as Java’s volatile. Apart from atomic versions of load and store
instructions, LLVM supports two atomic instructions: atomicrmw (atomic read-
modify-write) and cmpxchg (atomic compare-and-exchange, also compare-
and-swap) which are essentially an atomic load, immediately followed by an
operation and an atomic store in such a way that no other memory action
can happen between the load and the store. LLVM also contains a fence
instruction (memory barrier) which allows for synchronization which is not
part of any other operation.

2.4.1 Atomic Ordering

The semantics of these atomic instructions are affected by their atomic ordering
which gives the strength of atomicity they guarantee. Apart from not atomic
which is used to denote load and store instructions with no atomicity
guarantee, there are six atomic orderings: unordered, monotonic, acquire,
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release, acquire-release, and sequentially consistent (given in order of increasing
strength). These atomic orderings are defined by the memory model of
LLVM (which is described in detail in chapter Memory Model for Concurrent
Operation of [31]).

In order to describe the aforementioned atomic orderings, we first need to
define the happens-before partial order of operations of a concurrent program.
Happens-before is the least partial order that is a superset of a single-thread
execution order, and when a synchronizes-with b, it includes an edge from a
to b. Synchronizes-with edges are introduced in platform-specific ways,2 and
by atomic instructions.

Unordered can be used only for load and store instructions and does not
guarantee any synchronization, but it guarantees that the load or store
itself will be atomic. Such an instruction cannot be split into two or
more instructions or otherwise changed in a way that a load would result
in a value different from all written previously to the same memory
location. This memory ordering is used for non-atomic loads and stores
in Java and other programming languages in which data races are not
allowed to have undefined behaviour.3

Monotonic corresponds to memory_order_relaxed in the C++11 standard.
In addition to guarantees given by unordered, it guarantees that a total
ordering consistent with the happens-before partial order exists between
all monotonic operations affecting the same memory location.

Acquire corresponds to memory_order_acquire in C++11. In addition to
the guarantees of monotonic ordering, a read operation flagged as acquire
creates a synchronizes-with edge with a write operation which created
the value if this write operation was flagged as release. Acquire is a
memory ordering strong enough to implement lock acquisition.

Release corresponds to memory_order_release in C++11. In addition to
the guarantees of monotonic ordering, it can create a synchronizes-with
edge with corresponding acquire operation. Release is memory ordering
strong enough to implement lock release.

Acquire-release corresponds to memory_order_acq_rel in C++11 and acts
as both acquire and release on a given memory location.

Sequentially Consistent corresponds to memory_order_seq_cst which is
the default for operations on atomic objects in C++. In addition

2For example by thread creation or joining, mutex locking, and unlocking.
3This is in contrast with C++11 and C11 standards that specify that a concurrent,

unsynchronized access to the same non-atomic memory location results in an undefined
behaviour, for example load can return a value which was never written to a given memory
location.
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thread t1

store 1, @a release

store 1, @b release

thread t2

%1 = load @b acquire

store %1, @c release

store 1, @d monotinic

%1 = load @d acquire

Figure 2.1: Happens-before partial order and synchronizes-with edges of a
simple program with two threads (t1 and t2) and global variables a, b, c, and
d for an execution when first the thread t1 executes two instructions, then
t2 executes and finally t1 continues execution. The black arrows denote a
happens-before ordering given from the single-thread execution, while the red
arrow denotes a synchronizes-with edge (which is part of the happens-before
partial order). Please note that there is no synchronizes-with edge between
the store and load of d (even in case that the load returns the value written
by the store) as the store is not release or stronger.

to guarantees given by acquire-release, it guarantees that there is a
global total order of all sequentially-consistent operations on all memory
locations which is consistent with happens-before partial order and with
modification order of all the affected memory locations.

An example of synchronizes-with edges and a happens-before partial order
can be seen in Figure 2.1.

Unlike aforementioned atomic instructions, the fence instruction is not
bound to a specific memory location. Instead, it establishes memory syn-
chronization between non-atomic and monotonic atomic accesses. The syn-
chronization is established if there exists a pair of fence instructions R and
A where R is a release fence and A is an acquire fence, an atomic object M
which is modified by instruction S (with at least monotonic ordering) after
R and read by instruction L (with at least monotonic ordering) before A. In
this case, there is a happens-before edge from R to A. Now if the read L of
M observes the value written by write S, this implies that all (atomic or not)
writes which happen-before the fence R also happen-before the fence A. An
illustration how this can be used to implement a spin-lock can be found in
Figure 2.2.

If the fence has sequentially consistent ordering it also participates in a
global program order of all sequentially consistent operations. A fence is not
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allowed to have monotonic, unordered, or not atomic ordering.

Finally, all atomic instructions can optionally have a singlethreaded
flag which means they do not synchronize with other threads, and only
synchronize with other atomic instructions within the thread. This is useful
for synchronization with signal handlers.
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1 int a;
2 std::atomic< bool > flag;
3

4 void foo() {
5 a = 42;
6 std::atomic_thread_fence( std::memory_order_release );
7 flag.store( true, std::memory_order_relaxed );
8 }
9

10 void bar() {
11 while ( !flag.load( std::memory_order_relaxed ) ) { }
12 std::atomic_thread_fence( std::memory_order_acquire );
13 std::cout << a << std::endl; // this will print 42
14 }

1 define void @_Z3foov() {
2 entry:
3 store i32 42, i32* @a, align 4
4 fence release
5 store atomic i8 1, i8* @flag monotonic, align 1
6 ret void
7 }
8

9 define void @_Z3barv() {
10 entry:
11 br label %while.cond
12

13 while.cond:
14 %0 = load atomic i8, i8* @flag monotonic, align 1
15 %tobool.i.i = icmp eq i8 %0, 0
16 br i1 %tobool.i.i, label %while.cond, label %while.end
17

18 while.end:
19 fence acquire
20 %1 = load i32, i32* @a, align 4
21 ; ...

Figure 2.2: An example of a use of fence instruction. The release fence (line
6 in C++, 4 in LLVM) synchronizes with the acquire fence (line 12 in C++, 19
in LLVM) because there exists an atomic object flag and an operation which
modifies it with a monotonic ordering (lines 7, 5) after the release fence, and
reads it, again with a monotonic ordering (lines 11, 14), before the acquire
fence.
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Chapter 3

DIVINE

In this chapter, we describe internal architecture of DIVINE1 with the main
focus on the implementation of LLVM verification. More details about DIVINE
can be found for example in [33, 6, 10].

For the purposes of this thesis, most of the internal architecture of DIVINE
is irrelevant and we will focus mostly on the LLVM interpreter, which is
the only part directly involved in this work, and its interaction with the
verified program is important for the understanding of the proposed LLVM
transformations as well as possibility to use them outside of DIVINE. We will
also describe state space reduction techniques implemented in DIVINE.

3.1 Overall Architecture

DIVINE is implemented in C++, with a modular architecture. The main
modules are state space generators, exploration algorithms, and closed set
stores. Currently, there are multiple implementations of each of these modules,
providing different functionality. For state space generators, there are versions
for different input formalisms such as LLVM, DVE [37], and UPPAAL timed
automata [11]. Each of these generators define an input formalism and can
be used to generate a state space graph from its input, that is, for a given
state in the state space, it yields its successors and is able to report state flags.
State flags are used by the exploration algorithm to detect if a goal state was
reached (in the case of safety properties) or the state is accepting (in the case
of LTL verification using Büchi automata).

The closed set store defines a way in which the closed set is stored, so that
for a given state, it can be quickly checked if it was already seen and it is
possible to retrieve algorithm data associated with this state. In DIVINE, two
versions of closed set stores are present: a hash table and a hash table with
lossless tree compression [36].

1More precisely version 3.3 which is the latest released version at the time of writing of
this thesis.

15



16 CHAPTER 3. DIVINE

Libraries

C++ Clang LLVM IR LART LLVM IR DIVINE

LTL or safety property

ValidCounterexample

Figure 3.1: Workflow of verification of C++ programs with DIVINE. LART
is optional. Boxes with rounded corners represent executables.

Finally, the exploration algorithm connects all these parts together in
order to verify a given property. Which algorithm is used depends on the
verified property, for safety properties, either standard BFS-based reachability
or context-switch-directed reachability [40] can be used. For general LTL
properties, the OWCTY algorithm [7] is used. All of these algorithms support
parallel and distributed verification.

3.2 LLVM in DIVINE

LLVM support is implemented by the means of an LLVM state space generator,
also referred to as an LLVM interpreter, and libraries. The interpreter is
responsible for instruction execution, memory allocation and thread handling,
as well as parts of exception handling. The role of the interpreter is similar
to the role of the operating system and hardware for natively compiled
programs. On the other hand, the libraries provide higher level functionality
for user’s programs, as they implement language support by the means of
standard libraries for C and C++, higher-level threading by the means of
the pthread library, and to some extent a POSIX-compatible environment,
with a simulation of basic filesystem functionality. The libraries use intrinsic
functions provided by the interpreter to implement low-level functionality;
these functions are akin to system calls in operating systems.

We will denote all the parts implemented in LLVM bitcode, that is the
libraries together with the user-provided code as the userspace, to distinguish
it from the interpreter, which is compiled into DIVINE. Unlike the interpreter,
the userspace can be easily changed, or even completely replaced without the
need to modify and recompile DIVINE itself, and is closely tied to the language
of the verified program, while the interpreter is mostly language-agnostic.

In order to verify programs in C or C++ in DIVINE, they are first com-
piled into LLVM using Clang together with libraries, the overall workflow of
verification of C/C++ code is illustrated in Figure 3.1.
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3.2.1 Interpreter

The LLVM interpreter is responsible for the execution of LLVM instructions
and intrinsic functions (built-in operations which are represented in LLVM as
calls to certain functions with a __divine or llvm prefix and are executed
similarly to instructions in the interpreter). It also performs state space
reductions (described in Section 3.2.5) and recognizes which states violate the
verified property.

Problem Categories

DIVINE has several safety properties which can be verified in LLVM models;
these properties are specified in term of problem categories. Each category is
a group of related problems which should be reported as property violations.
Problem categories can be reported either directly by the LLVM interpreter, or
from the userspace using the __divine_problem intrinsic. When a problem is
reported, it is indicated in the state together with the position in the program
at which it was detected. Problem names are defined in the divine/problem.h
header file, which is available to the program when it is compiled using DIVINE.

Assert corresponds to a call of assert function with arguments which eval-
uated to false.

Invalid dereference is reported by the interpreter if a load is performed
from an invalid address.

Invalid argument is reported by the interpreter when a function is called
with unexpected arguments, for example, non-variadic function called
with more (or fewer) arguments that it expected, or an intrinsic called
with wrong argument values.

Out of bounds is reported by the interpreter when an access out of the
bounds of a memory object is attempted.

Division by zero is reported when integral division by zero is attempted.
Unreachable executed is reported if an unreachable instruction is exe-

cuted. This instruction usually occurs at the end of a non-void function
which lacks a return statement.

Memory leak is reported when the last pointer to a given heap memory
object is destroyed before the object is freed.

Not implemented is intended to be reported by the userspace in function
stubs (a function which is provided only so that bitcode does not contain
undefined functions, but is not implemented, for example because it is
not expected to be used).

Uninitialized is reported by the interpreter if the control flow depends on
an uninitialized value.

Deadlock is reported by the userspace deadlock detection mechanisms, for
example when a circular wait in pthread mutexes is detected.

Other is used by the userspace to report other types of problems.
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Intrinsic Functions

Intrinsic functions allow the userspace to communicate with the interpreter,
in order to allocate or free memory, create threads, report errors and so on.
These functions are intended to be used by library writers, not by the users
of DIVINE. Nevertheless, they are relevant to this work as some of them are
used in proposed transformations. Since these functions are DIVINE-specific,
the transformations using them would need to be modified, or equivalent
functions would have to be provided should the transformation be used for
other tools.

int __divine_new_thread( void (*entry)(void *), void *arg );
int __divine_get_tid();

The __divine_new_thread intrinsic instructs the interpreter to create
a new thread, this thread will use entry as its entry procedure. entry
has to accept a single void* argument, the interpreter will pass arg to the
entry procedure of new thread. The function returns a thread ID used for
identification of the new thread in DIVINE’s interpreter. __divine_get_tid
returns DIVINE thread ID of the thread which executed it.

When implementing threading primitives (such as those in the pthread
library) in userspace, it is required that these are themselves free of data
races. To facilitate this, DIVINE provides a way to make a section of instructs
atomic; the interpreter ensures that this block of instructions is indeed executed
atomically, that there is only one edge in the state space (which corresponds to
the entire block of instructions, and may include any number of instructions
or even function calls. It is, however, a responsibility of the library writer to
use these atomic sections correctly, namely, each of these sections must always
terminate; that is, there must be no (possibly) infinite cycles or recursion,
such as busy-waiting for a variable to be set by another thread.

void __divine_interrupt_mask();
void __divine_interrupt_unmask();

The __divine_interrupt_mask function starts an atomic section; all
actions performed until the atomic section ends will happen atomically. The
atomic section can end in two ways, either by an explicit call to unmask
function, or implicitly when function which called the mask function exits.

The behaviour of atomic sections can be more precisely explained by the
means of a mask flag associated with each frame of the call stack. When
__divine_interrupt_mask is called, the frame of its caller is marked with
a mask flag, which can be reset by a call to __divine_interrupt_unmask.
An instruction is part of an atomic section if the frame it corresponds
to has the mask flag set. If the executed function is a function call, the
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frame of the callee inherits the mask flag of the caller. However, when
__divine_interrupt_unmask is called, it resets the mask flag of its caller,
leaving mask flags of functions lower in the stack unmodified. If the cur-
rent function which calls __divine_interrupt_unmask is not the same as
the caller of __divine_interrupt_mask, the atomic section ends and a new
atomic section will be entered when the current function returns (the caller of
the current function still has the masked flag set).

void __divine_assert( int value );
void __divine_problem( int type, const char *data );

These functions can be used to report problems from the userspace.
__divine_assert behaves much like the standard C macro assert: if it
is called with a nonzero value, the assertion violated problem is added to
the current state’s problems. __divine_problem unconditionally reports a
problem of a given category to the interpreter; the report can be accompanied
by an error message passed in the data value.

void __divine_ap( int id );

__divine_ap indicates that atomic proposition represented by id holds
in the current state. For more details on LTL in DIVINE, see Section 3.2.3.

int __divine_choice( int n, ... );

__divine_choice is a nondeterministic choice operator. When it is en-
countered, the state of the program splits into n copies; each copy of the state
will see a different return value from __divine_choice, starting from 0 and
up to n − 1. When more than one parameter is given, the choice becomes
probabilistic and the remaining parameters give the probability distribution
of the choices (there must be exactly n additional parameters). This can be
used for probabilistic C++ verification, see [8] for more details.

void *__divine_malloc( unsigned long size );
void __divine_free( void *ptr );
int __divine_heap_object_size( void *ptr );
int __divine_is_private( void *ptr );

These are low-level heap access functions. __divine_malloc allocates a
new block of memory of a given size; it never fails. __divine_free frees a
block of memory previously allocated with __divine_malloc. If the block
was already freed, a problem is reported. If a null pointer is passed to
__divine_free, nothing is done.

__divine_heap_object_size returns the allocation size of a given object,
and __divine_is_private returns nonzero if the pointer passed to it is
private to the thread calling this function.
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void *__divine_memcpy( void *dest, void *src, size_t count );

The behaviour of __divine_memcpy is similar to the memmove function in
the standard C library, that is, it copies count bytes from src to dest; the
memory areas are allowed to overlap. This intrinsic is required due to pointer
tracking used for heap canonization (see [34] for details on heap canonization).

void *__divine_va_start();

This function is used to implement C macros for functions with variable
number of arguments. The call to __divine_va_start returns a pointer
to a block of memory that contains all the variadic arguments, successively
assigned higher addresses going from left to right.

void __divine_unwind( int frameid, ... );
struct _DivineLP_Info *__divine_landingpad( int frameid );

These functions relate to exception handling. __divine_unwind unwinds
all frames between the current frame and the frame denoted by frameid.
__divine_landingpad gives information about the landingpad instruction
associated with the active call in a given frame.

3.2.2 Exception Handling

In order to allow verification of unmodified programs in any programing
language, it is desirable that all the language features can be handled by the
verifier. When LLVM is used as an intermediate representation by the verifier,
most of the language features are supported automatically by the use of a
pre-existing compiler. Nevertheless, there might still be some features that
require support from the verifier. C++ exceptions are such a feature and they
are often omitted by verifiers for this reason.

In DIVINE, C++ exceptions are supported and the mechanisms used should
allow implementation of exceptions in other programming languages entirely in
the userspace, provided that they use LLVM exception handling as described
in Section 2.3 and they use similar mechanisms as C++ to determine which
landingpad clause matches the exception. The full description of DIVINE’s
exceptions can be found in [35].

From the point of view of a C++ program, DIVINE acts as an unwinder
library, as it allows control to be transfered from the currently executing
function into a landing block corresponding to an active invoke instruction
in some stack frame deeper in the stack. The interface for this functionality
is quite simple and it consists of the following functions and data types:

void __divine_unwind( int frameid, ... );
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struct _DivineLP_Clause {
int32_t type_id;
void *tag;

};

struct _DivineLP_Info {
int32_t cleanup;
int32_t clause_count;
void *personality;
struct _DivineLP_Clause clause[];

};

struct _DivineLP_Info *__divine_landingpad( int frameid );

__divine_unwind unwinds all frames between the current frame and
the frame denoted by frameid. No landing pads are triggered in the in-
termediate frames, if there is a landingpad for the active call in the frame
in which the unwinding ends and any arguments other than frameid were
passed to __divine_unwind, this landing pad returns arguments passed to
__divine_unwind (if the active call instruction in the destination frame is
call and not invoke, the extra arguments are returned as the result of the
function). The frameid is 0 for the caller of __divine_unwind, −1 for its
caller and so on.

__divine_landingpad gives information about landingpad associated
with the active invoke in the frame denoted by frameid, if there is some. It
returns a pointer to a _DivineLP_Info object which corresponds to the landing
pad, or a null pointer if the frame does not exist. If the active instruction in the
target frame is a call instead of an invoke, the returned _DivineLP_Info
object will contain no clauses. The returned structure encodes information
about the landingpad it corresponds to and about the personality function
used by its enclosing function. There is a flag which indicates whether the
landing block is a cleanup block (it should be entered even if the exception does
not match any of the clauses), and an array of _DivineLP_Clause structures
which encodes the clauses of the landingpad. For each of these clauses, there
is an identifier which should be returned as a selector from the landingpad if
this clause is matched, and a pointer to a language-specific tag (which is a
type information object in C++).

Using these functions, a function which throws an exception can be
implemented: it goes through the stack asking for _DivineLP_Info in each
frame beginning with its caller, and for each of them checks if the exception
type matches any of the clauses in the landingpad. When a matching clause
is found, the corresponding type id is set in the exception object, which is then
passed into a personality function. The personality function returns a value
which should be returned from the landingpad instruction, so this value is



22 CHAPTER 3. DIVINE

#include <divine.h>

enum APs { c1in, c1out, c2in, c2out };
LTL(exclusion,

G((c1in -> (!c2in W c1out)) && (c2in -> (!c1in W c2out))));

void critical1() {
AP( c1in );
AP( c1out );

}

void critical2() {
AP( c2in );
AP( c2out );

}

Figure 3.2: A fragment of C program which uses LTL property exclusion
to verify that functions critical1 and critical2 cannot be executed in
parallel.

passed, together with the frame id of the target frame, into __divine_unwind
to perform the unwinding.

The resume instruction implementation is in the interpreter. It finds the
nearest invoke in the call stack and transfers control to its landingpad which
will return the value passed to the resume.

Apart from the aforementioned exception handling __divine_unwind is
also usable for the implementation of functions such as pthread_exit. In
this case, the stack is fully unwound, which causes the thread to terminate.
Furthermore, [35] presents a minor extension of the exception handling mech-
anism which would allow an implementation of the setjmp/longjmp POSIX
functions; this extension is not implemented in DIVINE.

3.2.3 LTL

LTL support in DIVINE is implemented using an explicit set of atomic proposi-
tions defined as enum APs in the verified program. These atomic propositions
are activated explicitly using a macro named AP (which uses __divine_ap
internally), and they are active in the state where AP is called. As a result
of this explicit activation of atomic propositions, it is not possible for more
than one atomic proposition to be true in any state, and it is not possible
to express certain formulas, namely G(a) for a ∈ APs. The LTL properties
which should be verified are encoded in the program using a macro named
LTL. See Figure 3.2 for an example of a program with LTL in DIVINE.
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3.2.4 Userspace

DIVINE has userspace support for C and C++ standard libraries using PDCLib
and libc++. This support is mostly complete, the most notable missing
parts are locale support (which is missing in PDCLib) and limited support for
filesystem primitives (there is support for the creation of directory snapshots
which can be accessed and processed using standard C, C++, or POSIX
functions).

Apart from standard libraries, DIVINE provides the pthread threading
library, which provides thread support for C and older versions of C++ which
do not include thread support in the standard library and is also used as
the underlying implementation of C++11 threads. Furthermore, there is
rudimentary support for POSIX-compatible filesystem functions, including
certain types of UNIX domain sockets; however, this library is still under
development at the time of writing of this thesis.

From the point of view of this thesis, all the userspace is considered to be
part of the verified program; that is, any LLVM transformation runs on the
entire userspace, not just the parts provided by the user of DIVINE.

3.2.5 Reduction Techniques

In order to make verification of real-world LLVM programs tractable, it is
necessary to employ state space reductions. DIVINE uses τ+ reduction to
eliminate unnecessary intermediate states and heap symmetry reduction when
verifying LLVM [34]. These reductions preserve all safety and LTL proper-
ties which can be expressed in DIVINE. Furthermore, DIVINE uses lossless,
modeling-language-agnostic tree compression of the entire state space [36].

τ+ Reduction

In LLVM, many instructions have no effect which could be observed by threads
other than the one which executes the instruction. This is true for all
instructions which do not manipulate memory (they might still use registers,
which are always private to the function in which they are declared), or which
manipulate memory which is thread private.

DIVINE uses this observation to reduce the state space. It is possible to
execute more than one instruction on a single edge in the state space, provided
that only one of them has an effect visible to other threads (is observable).
To do this, the interpreter tracks if it has executed any observable instruction
and emits a state just before another observable instruction is executed (this,
of course, is suppressed in atomic sections, where only tracking takes place;
a state can be emitted only after the end of the atomic section). To decide
which instructions are observable, DIVINE uses the following heuristics:

• any instruction which does not manipulate memory is not observable
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(that is, all instructions apart from load, store, atomicrmw, cmpxchg
and the built-in function __divine_memcpy2);

• for the memory-manipulating instructions, it is checked whether the
concerned memory location can be visible by other threads; if it can,
the instruction is observable.

To detect which memory can be accessed from particular threads, DIVINE
checks the reachability of a given memory object in the memory graph (memory
objects are nodes, pointers are edges of this graph). In order to check if thread
a has access to a memory object x, it has to check that x is reachable either
from global variables or from registers in any stack frames which belong to
a. To build the memory graph, DIVINE remembers which memory locations
contain heap pointers (this is required as it is valid to cast a pointer to and
from a number in both LLVM and C++).

However, in order to ensure that successor generation terminates, it is
necessary to avoid execution of infinite loops (or recursion) on a single edge
in the state space (this could happen, for example, due to an infinite cycle of
unobservable instructions). For this reason, DIVINE also tracks which program
counter values were encountered during successor generation, and if any of
them is to be encountered for a second time, a state is emitted before the
second execution of given instruction.

3.3 LART
LART is a tool for LLVM transformation and optimization developed together
with DIVINE; it was first introduced in [33] as a platform for implementation
of static abstraction and refinement of LLVM programs. It is intended to
integrate LLVM transformations and analyses in such a way that would make
it easy to implement new and reuse existing analyses.

Before the time of writing of this thesis, LART was never released and it
contained few mostly incomplete analyses and a proof-of-concept version of
an LLVM transformation which adds weak memory model verification support
to existing LLVM program (this part was presented in [42]). Most of the work
presented in this thesis is implemented in LART.

2In fact DIVINE 3.3 does not consider __divine_memcpy observable, this is a bug discov-
ered and fixed during the writing of this thesis.
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Proposed LLVM
Transformations

In this chapter, we will propose LLVM transformations which aim at improving
model checking capabilities and reduce state-space size. Most of the proposed
transformations were implemented in LART and will be released together with
the next release of DIVINE.

4.1 Extensions to DIVINE
In order to implement some of the proposed transformations, it was necessary
to perform minor changes to the LLVM interpreter in DIVINE. All these
changes are implemented in the version of DIVINE submitted with this thesis
and are described in this section.

4.1.1 Simplified Atomic Masks

The original semantics of __divine_interrupt_mask were not well suited for
composition of functions which use it. For this reason, we reimplemented this
feature so that it behaves as if __divine_interrupt_mask locks a global lock
and __divine_interrupt_unmask unlocks it, and we devised a higher-level
interface for this feature. This interface is described in Section 4.3.

4.1.2 Assume Intrinsic

void __divine_assume( int value );

We extended DIVINE with a new intrinsic function which implements
the well-known assume statement. If __divine_assume is executed with
a zero value, it stops the interpreter and causes it to ignore the current
state. __divine_assume is useful for implementation of synchronization
primitives, for example in weak memory model simulation (see Section 4.4).

25
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This function should be used primarily by DIVINE developers; it combines
well with atomic masks to create conditional transitions in the state space.

4.1.3 Extended State Space Reductions

When evaluating which transformations are useful for state space reductions,
we identified several cases in which a runtime solution by extension of the τ+
reduction was more efficient. For this reason, the existing reduction technique
was improved and these improvements are implemented in the version of
DIVINE submitted with this thesis. Please refer to Section 3.2.5 for details
about τ+ reduction. The evaluation of the impact of the proposed changes to
τ+ reduction can be found in Section 5.1.

Control Flow Cycle Detection

First, we improved upon the overly pessimistic control flow cycle detection
heuristic. This detection is used to make sure that successor generation
terminates and it is based on detection of repeating program counter values.
However, the set of encountered program counter values was originally reset
only at the beginning of state generation. For this reason, it was not possible
to execute one function more that once on one edge in the state space as
the program counter of this function was already in the set of seen program
counters on the second invocation. Therefore, a new state was generated
before the function could be executed for a second time, which resulted in
unnecessary states.

To alleviate this limitation, all program counter values of a function are
deleted from the set of seen program counter values every time the function
exits. This way, two consecutive calls to the same function need not generate
a new state, while a call in the loop will generate a new state before the
second invocation (since the call instruction repeats), and recursion will also
generate a new state at the second entry into the recursive function.

This improved reduction is now enabled by default. The original behaviour
can be obtained by option --reduce=tau+,taustores to divine verify (the
extended reduction can be explicitly enabled by tau++ key in the --reduce
option if necessary).

Independent Loads

Another case of overly strict reduction heuristic are independent loads from
shared memory locations. Consider two shared memory locations (for example
shared variables) a and b such that a 6= b. The proposition is that we can
extend τ+ reduction in such a way that load from a and load from b can be
performed without an intermediate state (that is, on a single edge in the state
space). We will now show correctness of this proposition.
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Suppose thread t1 performs a load of a and then a load of b (and there
are no actions which would be considered observable by τ+ in-between).

• If any other thread performs a load of a or b, this clearly does not
interfere with t1.

• If some other thread t2 writes1 into a, this write is always an observable
action and it can happen either

a) before the load of a by t1 or after the load of b by t1; in these cases,
the proposed change has no effect;

b) after the load of a, but before the load of b by t1; this case is
not possible with the extended reduction, but an equivalent result
can be obtained if a is written after the load of b, as this load is
independent and therefore its result does not depend on the value
of a.

• If some other thread t2 writes into b, this write is always an observable
action and it can happen either

a) before the load of a by t1 or after the load of b by t1; in these cases,
the proposed change has no effect;

b) after the load of a, but before the load of b by t1; again, this case is
not possible with the extended reduction, but an equivalent result
can be obtained if b is written before the load of a (it does not
change its result as a 6= b).

• There can be no synchronization which would disallow any of the
aforementioned interleavings as thread t2 cannot detect where in the
sequence of instructions between load a and load b thread t1 is (there
are no visible actions between the loads).

• On the other hand, if there are any other visible actions between these
loads, or if a = b, the conditions are not met and the loads are not
performed atomically.

The same argument can be applied to more than two independent loads
from a single thread; this way, any sequence of independent loads and unob-
servable actions can execute atomically.

Furthermore, the reduction can be extended to a sequence of independent
loads followed by a write into a memory location distinct from all the memory
locations of the loads. The argument is similar to the argumentation for the
case of a sequence of loads. If a write w from another thread happens between

1Write can be implemented using store, atomicrmw, or cmpxchg instructions, or by
__divine_memcpy intrinsic.
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the loads and the write w′ in the sequence, a write with the same effect can
happen in the reduced state space too: if w and w′ write to different memory
locations than w can happen after the sequence which ends with w′; otherwise,
all the loads in the sequence are independent of w and therefore w can happen
before the sequence.

To implement this reduction, DIVINE now tracks which memory objects
were loaded while it generates a state. If a memory object is loaded for the
first time, its address is saved and this load is not considered to be observable.
If the same object is to be accessed for the second time during generation of
the state, the state is emitted just before this access. If a non-private object is
to be loaded after a new value was stored into it, a state is emitted before this
load too. This reduction is now enabled by default; the original behaviour
can be obtained by using the option --reduce=tau++,taustores to divine
verify (the extended reduction can be explicitly enabled by the tauloads
key in the --reduce option).

4.2 Analyses and Transformation Building Blocks
Many tasks done in LLVM transformations are common and, therefore, should
be provided as separate and reusable analyses or transformation building
blocks, so that they can be readily used when required and it is not necessary
to implement them ad-hoc every time. In some cases (for example dominator
tree and domination relation), analyses are provided in the LLVM library, and
LLVM also provides useful utilities for instruction and basic block manipulation,
such as basic block splitting and instruction insertion. In other cases, it
is useful to add to this set of primitives, and, for this reason, LART was
extended to include several such utilities.

4.2.1 Fast Instruction Reachability

While LLVM has support for checking whether the value of one instruction
might reach some other instruction (using the isPotentiallyReachable
function), this function is slow if many-to-many reachability is to be calcu-
lated (this function’s time complexity is linear with respect to the number
of basic blocks in the control flow graph of the function). For this reason,
we introduce an analysis which pre-calculates the reachability relation be-
tween all instructions and allows fast querying; this analysis can be found in
lart/analysis/bbreach.h.

To calculate instruction reachability quickly and store it compactly, we
store the transitive closure of basic block reachability instead; the transitive
closure of instruction reachability can be easily retrieved from this information.
Instruction i other than invoke reaches instruction j in at least one step if
and only if the basic block b(i) of instruction i reaches in at least one step the
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basic block b(j) of instruction j or if b(i) = b(j) and i is earlier in b(i) than j.
For the invoke instruction, the situation is more complicated as it is the only
terminator instruction which returns a value, and its value is available only
in its normal destination block and not in its unwind destination block (the
landing block which is used when the function called by the invoke throws
an exception). For this reason, the value of invoke instruction i reaches
instruction j if and only if b(j) is reachable (in any number of steps, including
zero) from the normal destination basic block of i.

Basic block reachability is calculated in two phases, first the basic block
graph of the function is split into strongly connected components using Tarjan’s
algorithm. This results in a directed acyclic graph of strongly connected
components. This SCC collapse is recursively traversed and the transitive
closure of SCC reachability is calculated.

The theoretical time complexity of this algorithm is linear in the size of
the control flow graph of the function (which is in the worst case O(n2) where
n is the number of basic blocks). In practice, associative maps are used in
several parts of the algorithm, resulting in the worst case time complexity in
O(n2 · logn) for transitive closure calculation and O(logn) for retrieval of the
information whether one block reaches another. However, since in practice
control flow graphs are sparse,2 the expected time complexity is O(n logn)
for transitive closure calculation.

4.2.2 Exception Visibility

Often, LLVM is transformed in a way which requires that certain cleanup action
is performed right before a function exits; one such example would be unlocking
atomic sections, used in Section 4.3. Implementing this for languages without
non-local control flow transfer other than with call and ret instructions,
for example standard C, would be fairly straightforward. In this case, it is
sufficient to run the cleanup just before the function returns. However, while
pure standard-compliant C has no non-local control transfer, in POSIX there
are setjmp and longjmp functions which allow non-local jumps and, even
more importantly, C++ has exceptions in its standard. Since longjmp and
setjmp are not supported in DIVINE, we will assume they will not be used in
the transformed program. On the other hand, exceptions are supported by
DIVINE and, therefore, should be taken into account.

In the presence of exceptions (but without longjmp); a function can be
exited in the following ways:

• by a ret instruction;

2The argument is that all terminator instructions other that switch have at most two
successors and switch is rare, for this reason, the average number of edges in control flow
graph with n basic blocks is expected to be less than 2n.
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• by a resume instruction which resumes propagation of an exception
which was earlier intercepted by a landingpad;

• by an explicit call to __divine_unwind;
• when an exception causes unwinding, and the active instruction through

which the exception is propagating is a call and not an invoke, or it
is an invoke and the associated landingpad does not catch exceptions
of given type; in this case, the frame of the function is unwound and
the exception is not intercepted.

The latest case happens often in C++ functions which do not require
any destructors to be run at the end of the function. In those cases, Clang
usually generates a call instead of an invoke even if the callee can throw an
exception, as it is not necessary to intercept the exception in the caller. Also,
if the function contains a try block, Clang will generate an invoke without a
cleanup flag in the landingpad as there is no need to run any destructors.
The problem with the last case is that the function exit is implicit: it is
possible at any call instruction which can throw, or at an invoke with a
landingpad without a cleanup flag.

In order to make it possible to add code at the end of the function, it
is therefore necessary to eliminate this implicit exit without interception of
the exception. The transformation must be performed in such a way that it
does not interfere with exception handling which was already present in the
transformed function.

Therefore, we need to transform any call in such a way that if the called
function can throw an exception, it is always called by invoke, and all the
langingpad instructions have a cleanup flag. Furthermore, this transforma-
tion must not change the observable behaviour of the program. If an exception
would fall through without being intercepted in the original program, it needs
to be intercepted and immediately resumed, and if the exception was inter-
cepted by the original program, its processing must be left unchanged (while
the fact that the exception is intercepted by a langingpad and immediately
resumed makes the run different from the run in the original program, this
change is not distinguishable by any safety or LTL property supported by
DIVINE, and therefore the transformed program can be considered equivalent
to the original).

After this transformation, every exception is visible in every function it
can propagate through. Now if we need to add cleanup code to the function, it
is sufficient to add it before every ret and resume instruction and before calls
to __divine_unwind, as there is no other way the function can be exited.

If setjmp/longjmp were implemented as an extension of exception han-
dling support as described in [35], it would require minor modification of
this transformation. It would be necessary to run transformation cleanups,
but not cleanups done by higher level language (such as C++ destructors)
when unwinding is caused by longjmp (longjmp is not required to trigger
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destructors in C++; in fact, it is undefined behaviour to cause unwinding of
any function with nontrivial destructors by longjmp). To achieve this, a fresh
selector ID for longjmp would be assigned and a catch clause corresponding
to this ID would be added to each langingpad. If this clause is triggered,
only transformation cleanups would be run before the unwinding would be
resumed.

Implementation

The idea outlined above is implemented in lart/support/cleanup.h by the
function makeExceptionsVisible. Any call instruction for which we cannot
show that the callee cannot throw an exception is transformed into an invoke
instruction, which allows us to branch out into a landing block if an exception
is thrown by the callee. The landingpad in the landing block needs to be set
up so that it can catch any exception (this can be done using the cleanup
flag for landingpad). The instrumentation can be done as follows:

• for a call site, if it is a call:

1. given a call instruction to be converted, split its basic block into
two just after this instruction (we will call these blocks invoke block
and invoke-ok block);

2. add a new basic block for cleanup; this block will contain a
landingpad instruction with a cleanup flag and no catch clauses
and a resume instruction (we will call this block invoke-unwind
block);

3. replace the call instruction with an invoke of the same function
and with the same parameters, its normal destination is set to the
invoke-ok block and its unwind destination is set to invoke-unwind
block;

• otherwise, if it is an invoke and its unwind block does not contain the
cleanup flag in the landingpad:

1. create a new basic block which contains just a resume instruction
(resume block)

2. add cleanup flag into the landingpad of the unwind block of the
invoke and branch into the resume block if the landing block is
triggered due to cleanup (selector value is 0),

• otherwise leave the instruction unmodified.

Any calls using the call instruction with a known destination which is
a function marked with nounwind will not be modified. Functions marked
with nounwind need not be checked for exceptions since LLVM states that
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these functions should never throw an exception and therefore we assume that
throwing an exception from such a function will be reported as an error by
the verifier.

After the call instrumentation, the following holds: every time a function
is entered during stack unwinding due to an active exception, the control is
transfered to a landing block. Moreover, if before this transformation the
exception would not have been intercepted by landingpad in this function,
after the transformation the exception will be rethrown by resume.

Furthermore, if the transformation adds a landingpad into a function
which did not contain any landingpad before, it is necessary to set a per-
sonality function for this function. For this reason, the personality function
which is used by the program is a parameter of the transformation.

An example of the transformation can be seen in Figure 4.1.

Finally, to simplify transformations which add cleanups at function exits,
a function atExits is available in the same header file.

4.2.3 Local Variable Cleanup

A special case of cleanup code ran before a function exits is local variable
cleanup, cleanup code which needs to access local variables (results of alloca
instructions). One of the transformations which requires this kind of cleanup is
the transformation to enable weak memory model verification (Section 4.4.5),
while another case can arise from compiled-in abstractions proposed in [33].
Variable cleanups are essentially akin to C++ destructors, in a sense that
they get executed at the end of the scope of the variable, no matter how this
happens (with the possible exception of thread termination).

The local variable cleanup builds on top of the function cleanups described
in Section 4.2.2. Unlike the previous case, it is not necessary to transform
all calls which can throw an exception; it is sufficient to transform calls
which can happen after some local variable declaration (that is, a value of an
alloca instruction can reach a call or an invoke instruction). After this
transformation, cleanup code is added before every exit from the function.
However, in order for the cleanup code to work, it needs to be able to access
all local variables which can be defined before the associated function exits
(results of all alloca instructions from which this exit can be reached). This
might not be always be the case in the original program, see Figure 4.2 for
an example. In this example, %y is defined in the if.then basic block and
it needs to be cleared just before the return instruction at the end of the
if.end basic block and the definition of %y does not dominate the cleaning
point.

The cleanup cannot be, in general, inserted after the last use of a local
variable as the variable’s address can escape the scope of the function and
even the thread in which it was created and, therefore, it is not decidable
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void foo() { throw 0; }
void bar() { foo(); }
int main() {

try { bar(); }
catch ( int & ) { }

}

An example of a simple C++ program which demonstrates use of exceptions,
the exception is thrown by foo, goes through bar and is caught in main.

define void @_Z3barv() #0 {
entry:

call void @_Z3foov()
unreachable

}

LLVM IR for function bar of the previous example (the names of functions
are mangled by the C++ compiler). It can be seen that while foo throws an
exception and this exception propagates through bar, bar does not intercept
this exception in any way.

1 define void @_Z3barv() #0 personality
2 i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) {
3 entry:
4 invoke void @_Z3foov()
5 to label %fin unwind label %lpad
6 lpad:
7 %0 = landingpad { i8*, i32 } cleanup
8 resume { i8*, i32 } %0 ; rethrow the exception
9 fin:

10 unreachable
11 }

A transformed version of bar in which the exception is intercepted and,
therefore, visible in this function, and it is immediately resumed. Cleanup
code would be inserted just before line 8. The original basic block entry
was split into entry and fin and the call instruction was replaced with an
invoke which transfers control to the lpad label if any exception is thrown
by foo. The function header is now extended with a personality function and
this personality function calculates the value returned by landingpad for a
given exception.

Figure 4.1: An example of the transformation of a function which makes
exceptions visible.
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entry:
%x = alloca i32, align 4
store i32 1, i32* %x, align 4
%0 = load i32, i32* %x, align 4
%cmp = icmp eq i32 %0, 0
br i1 %cmp, label %if.then, label %if.end

if.then: ; preds = %entry
%y = alloca i32, align 4
store i32 1, i32* %y, align 4
br label %if.end

if.end: ; preds = %if.then, %entry
; cleanup will be inserted here
ret i32 0

Figure 4.2: An example of LLVM code in which a local variable is allocated
in only one branch and therefore does not dominate the function exit. While
Clang usually moves all alloca instructions into the first block of the function,
the example is still a valid LLVM bitcode, and therefore should be handled
properly.

if.end: ; preds = %if.then, %entry
%y.phi = phi i32* [ null, %entry ], [ %y, %if.then ]
; cleanup will be inserted here, it will access %y.phi
ret i32 0

Figure 4.3: Transformation of the last basic block from Figure 4.2 to allow
cleanup of %y.

when its scope ends. Nevertheless, it is safe to insert the cleanup just before
the function exits as the variable will cease to exist when the function exits,
that is, immediately after the cleanup.

To make all local variables which can reach an exit point of a function
accessible at this exit point, we will first insert ϕ-nodes in such a way that
any alloca is represented in any block which it can reach, either by its value
if the control did pass the alloca instruction (the local variable is defined at
this point), or by the null constant if the control did not pass the alloca.
For our example, the result of the modification is shown in Figure 4.3. In this
code, %y.phi represents %y at the cleanup point. It can either be equal to %y
if the control passed through the definition of %y, or null otherwise.

While this transformation changes the set of runs of a program, all the
runs in the original program have equivalent (from the point of view of
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safety and LTL properties supported by DIVINE) runs in the transformed
program. The only difference is that there can be some intermediate states
(which correspond to the cleanup) in the transformed program’s runs. This
is, however, not distinguishable in DIVINE unless the cleanup code signals a
problem or sets an atomic proposition.

Implementation

To calculate which alloca instructions can reach a function exit, a version of
the standard reaching definitions analysis [1] is used. Using this analysis, we
compute which alloca instruction values reach the end of each basic block of
the function and for every such value which does not dominate the end of the
basic block, a ϕ-node is added. For each basic block, the algorithm also keeps
track of the value which represents a particular alloca instruction in this
basic block (it can be either the alloca itself, or a phi instruction). These
values are passed to the cleanup code. The transformation is done by the
addAllocaCleanups function which is defined in lart/support/cleanup.h.

4.3 New Interface for Atomic Sections

The interface for atomic sections in the verified code (described in Sec-
tion 3.2.1) is hard to use, the main reason being that while the mask set
by __divine_interrupt_mask is inherited by called functions, these func-
tions have no way of knowing if an instruction executes inside an atomic
section, and therefore, a callee can accidentally end the atomic section by
calling __divine_interrupt_unmask. This is especially bad for composition
of atomic functions, see Figure 4.4 for an example. For this reason, the only
compositionally safe way to use the DIVINE’s original atomic sections is to
never call __divine_interrupt_unmask and let DIVINE end the atomic sec-
tion when the caller of __divine_interrupt_mask ends.

To alleviate the aforementioned problems, we reimplemented atomic sec-
tions in DIVINE. The new design uses only one mask flag to indicate that
the current thread of execution is in an atomic section; this flag is internal
to the interpreter and need not be saved in the state (indeed, it would be
always set to false in the state emitted by the generator, because the state
can never be emitted in the middle of an atomic section). Furthermore, we
modified __divine_interrupt_mask to return an int value corresponding
to the value of mask flag before it was set by this call.

To make the new atomic sections easier to use, we provide higher level
interfaces for atomic sections in the form of a C++ library and annotations.
The C++ interface is intended to be used primarily by developers of the
language support and libraries for DIVINE, while the annotations are designed
to be used by users of DIVINE.
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1 void doSomething( int *ptr, int val ) {
2 __divine_interrupt_mask();
3 *ptr += val;
4 __divine_interrupt_unmask();
5 foo( ptr );
6 }
7

8 int main() {
9 int x = 0;

10 __divine_interrupt_mask();
11 doSomething( &x );
12 __divine_interrupt_unmask();
13 }

Figure 4.4: An example of a composition problem with the original version
of DIVINE’s atomic sections. The atomic section begins on line 10 and is
inherited by doSomething. The atomic section ends by the unmask call at
line 4 and the rest of doSomething and foo are not executed atomically. The
atomic section is then re-entered when doSomething returns.

The C++ interface is RAII-based,3 and works similarly to the C++11 mu-
tex ownership wrapper unique_lock with a recursive mutex. An atomic sec-
tion begins by construction of an object of the type divine::InterruptMask
and it is left either by a call to the release method of this object or by the de-
structor of the object. When atomic sections are nested, only the release on
the object which started the atomic section actually ends the atomic section.
See Figure 4.5 for an example.

The annotation interface is based on a LART transformation pass and
annotations which can be used to mark an entire functions as atomic. A
function can be marked atomic by adding __lart_atomic_function to the
function header, see Figure 4.6 for an example. While this is a safer way
to use atomic sections than explicitly using __divine_interrupt_mask, it
is still necessary that the atomic function always terminates (e.g. does not
contain an infinite cycle).

Implementation of Annotation Interface

Atomic sections using annotations are implemented in two phases. First, the
function is annotated with __lart_atomic_function which is a macro which
expands to GCC/Clang attributes annotate("lart.interrupt.masked")

3Resource Acquisition Is Initialization, a common pattern in C++. A resource is allocated
inside an object and safely deallocated when that object’s scope ends, usually at the end of
a function in which the object was declared [32].
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#include <divine/interrupt.h>

void doSomething( int *ptr, int val ) {
divine::InterruptMask mask;
*ptr += val;
// release the mask only if 'mask' object owns it:
mask.release();
// masked only if caller of doSomething was masked:
foo( ptr );

}

int main() {
int x = 0; // not masked
divine::InterruptMask mask;
doSomething( &x ); // maksed
x = 1; // still masked
// mask ends automatically at the end of main
// (if it began here)

}

Figure 4.5: An example use of the C++ interface for the new version of
atomic sections in DIVINE.

#include <lart/atomic.h> // defines the annotation
// this function executes atomically
int atomicInc( int *ptr, int val ) __lart_atomic_function {

int prev = *ptr;
*ptr += val;
return prev;

}

Figure 4.6: An example of using the annotation interface for atomic functions
in DIVINE. The function atomicInc is aways executed atomically and it is
safe to execute it inside another atomic section.
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and noinline; the first attribute is used so that the annotated function can
be identified in LLVM IR, the second to make sure the function will not be
inlined.

The second phase is the LART pass which adds atomic sections into
annotated functions. The pass implementation can be found in class Mask in
lart/reduction/interrupt.cpp. For each function which is annotated, it
adds a call to __divine_interrupt_mask at the beginning of the function, and
a call to __divine_interrupt_unmask before any exit point of the function
(using the cleanup transformation introduced in Section 4.2.2). The unmask
call is conditional: it is only called if the mask call returned 0 (that is, the
current atomic section begun by this call).

This LART pass was integrated into the program build with the divine
compile command and, therefore, it is not necessary to run LART manually
to make atomic sections work.

4.4 Weak Memory Models
In [42], it was proposed to add weak memory model simulation using LLVM
transformation. In this section, we will present an extended version of this
transformation. The new version supports the LLVM memory model fully,
including support for atomic instructions, support for more relaxed memory
models (than total store order), and specifying the memory model to use as
a parameter of the transformation. It also allows for verification of the full
range of properties supported by DIVINE (the original version was not usable
for verification of memory safety). Furthermore, we propose ways to reduce
the state space size compared to the original version. The evaluation of the
proposed transformation can be found in Section 5.2.

4.4.1 Representation of the LLVM Memory Model Using Store
Buffers

Relaxed memory models can be simulated using store buffers. Any write
is first done into a thread-private buffer and therefore it is invisible for
other threads. This buffer keeps the writes in FIFO order and it can be
flushed nondeterministically into memory; the order of flushing depends on
the particular memory model. For total store order, only the oldest entry
can be flushed, for partial store order any entry can be flushed, provided that
there is no older entry for the same memory location. Furthermore, any load
has to first look into the store buffer of its thread for newer values of the
loaded memory location and only if there is no such value, it can look into
memory. See Figure 4.7 for an example of store buffer instrumentation.

The basic idea behind the proposed LLVM memory model simulation is
that a store buffer can be flushed nondeterministically in any order, even
though not all orders result in valid runs of the program. The store buffer
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int x = 0, y = 0;

void thread0() {
y = 1;
cout << "x = " << x << endl;

}

void thread1() {
x = 1;
cout << "y = " << y << endl;

}

In this example, each of the threads first writes into a global variable and
later it reads the variable written by the other thread. Under sequential
consistency, the possible outcomes would be x = 1, y = 1; x = 1, y = 0; and
x = 0, y = 1 since at least one write must proceed before the first read can
proceed. However, under total store order, x = 0, y = 0 is also possible: this
corresponds to the reordering of the load on line 3 before the independent
store on line 2. This behaviour can be simulated using store buffers; in this
case the store on line 2 is not immediately visible, it is done into a store
buffer. The following diagram shows a (shortened) execution of the listed
code. Dashed lines represent where the given value is read from/stored to.

main memory

@x @x

0 0

store buffer for thread 0 store buffer for thread 1
@y 1 32 @x 1 32

thread 0
store @y 1;

load @x;

thread 1

store @x 1;

load @y;

Figure 4.7: An illustration of a behaviour which is not possible with sequen-
tial consistency. It is, however, possible with total store order or any more
relaxed memory model.
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entries are enriched with information about the instruction which created
them and therefore the validity of a particular run can be checked when a
load, a read fence, or an atomic instruction is performed, and the invalid runs
are discarded (using __divine_assume).

The approximation uses store buffers to delay store and fence instruc-
tions. There is a bounded store buffer associated with each thread of the
program and this buffer is filled by store and fence instructions and flushed
nondeterministically. The store buffer contains store entries, each of them
created by a single store instruction and contains the following fields:

• the address of the memory location of the store,
• the value of the store,
• the bit width of the stored value (the value size is limited to 64 bits),
• the atomic ordering used by the store,
• a bit which indicates if the value was already flushed (flushed flag),
• a bit set of threads which observed the store (observed set).

Apart from store entries, a store buffer can contain fence entries which
correspond to fence instructions with at least release ordering (write fence).
Fence entries have following fields:

• the atomic ordering of the fence,
• a bit set of threads which observed the fence.

Store buffer entries are saved in the order of execution of their corresponding
instructions.

Atomic instructions are not directly represented in store buffers; instead,
they are split into their non-atomic equivalents using load and store in-
structions which are performed atomically in a DIVINE’s atomic section and
transformed using weak memory model. Finally, load instructions and read
fences have constraints on the state of store buffers in which they can execute.
These constraints ensure that the guarantees given by the atomic ordering of
the instruction are met.

The aim of the proposed transformation is to approximate the LLVM
memory model as closely as possible (except for the limitations given by the
bound on store buffer size). For this reason, we support all atomic orderings
apart from not atomic, which is modelled as unordered.4 The store buffer is

4The difference between not atomic and unordered is that both the compiler and the
CPU is allowed to split not atomic operations and the value of a concurrently-written not
atomic location is undefined while for an unordered operation, it is guaranteed to be one of
the previously written values; however, on most modern hardware, there is no difference
between unordered and not atomic for objects of size less or equal to 64 bits. Not atomic
instructions also permit a large variety of optimizations. However, this is not a problem as
DIVINE should be applied on the bitcode after any desired optimizations.
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organized in a FIFO manner; it is flushed nondeterministically in any order
which satisfies the condition that no entry can be flushed into the memory if
there is an older matching entry. Entry A matches entry B (or depends on
B) if both A and B change the same memory location (this does not imply
that the address in A is the same as the address in B, as it can happen that
B changes only a part of the value written by A or vice versa).

Furthermore, the entry can be set as flushed using the flushed flag or
deleted from the store buffer when it is flushed. The flushed flag is used
only for monotonic (or stronger) entries which follow any release (or stronger)
entries; all other entries are deleted immediately. These flushed entries are
used to check validity of the run.

The description of the realization of atomic instructions follows. We will
denote local store buffer to be the store buffer of the thread which performs the
instruction in question; the store buffers of all other threads will be denoted
as foreign store buffers.

All stores are performed into the local store buffer. The address, the value,
and the bitwidth of the value is saved, the atomic ordering of the entry
is set according to the atomic ordering of the corresponding store
instruction, the flushed flag is set to false and the observed set is set to
the empty set.

Unordered loads can be executed at any time. All loads load the value
from the local store buffer if it contains a newer value then the memory.

Monotonic load can be executed at any time too. Furthermore, if there is
a flushed, at least monotonic entry E in any foreign store buffer, the
observed flag is set to any entry which:

• is in the same store buffer as E and is older, or E itself,
• and it has at least a release ordering.

All these entries are set to be observed by the thread which performs
the load.

Monotonic atomic compound instruction (cmpxchg or atomicrmw) can
be performed if a monotonic load can be performed and there is no not-
flushed monotonic entry for the same memory location in any foreign
store buffer. It also sets observed flags in the same way as monotonic
loads do.

Acquire fence can be performed if there are no entries in foreign store buffers
with at least release ordering which were observed by the current thread.
This way, a release store or fence synchronizes with an acquire fence if
the conditions of fence synchronization are met.
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Acquire load can be performed if

• a monotonic load from the same memory location can be performed,
• and an acquire fence can be performed,
• and there are no flushed release (or stronger) store entries for the

same memory location in any foreign store buffer.

This way an acquire load synchronizes with the latest release store to
the same memory location if the value of the store can be already read
(the only way to remove a release entry from a store buffer is to first
remove all the entries which precede it).

Acquire atomic compound operations can be performed if

• an acquire load from the same memory location can be performed,
• and there are no (at least) release entries for the same memory

location in any foreign store buffer.

Release and acquire-release loads are not allowed by LLVM.

Release fences add a fence entry into the local store buffer. The memory
ordering of the entry is set according to the ordering of the fence and
the observed set is set to an empty set.

Acquire-release fence behaves as both a release and an acquire fence.

Sequentially consistent fence can be performed if an acquire fence can be
performed and there are no sequentially consistent entries in any foreign
store buffer. This way, a sequentially consistent fence synchronizes with
any sequentially consistent operations performed earlier.

Sequentially consistent load or atomic compound operation can be
performed if

• the same operation with an acquire-release ordering and on the
same memory location can be performed,

• and a sequentially consistent fence can be performed.

While there is no explicit synchronization between multiple sequentially
consistent stores/loads/fences there is still a total order of all the sequentially
consistent operations which respects the program order of each of the threads
and the synchronizes-with edges. For operations within a single thread, their
relative position in this total order is given by the order in which they are
executed. For two stores executed in different threads which are not ordered as
a result of an explicit synchronization, their relative order can be arbitrary as
they are not dependent. Loads and atomic compound operations are explicitly
synchronized as described above.
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The case of monotonic operations is similar, not-otherwise-synchronized
stores and loads from different threads can be flushed in an arbitrary order.
The total order of monotonic operations over a memory location can be
derived from their order of execution:

• the total order of store instructions is given by the order in which the
corresponding store entries are flushed (which is a total order as DIVINE
executes instructions interleaved and not in parallel);

• the total order of load instructions is given by the order they are
executed in;

• every store is ordered before any load which loads the value written
by this or any later stores;

• this total order is consistent with the order of execution of threads; for
load instructions this is obvious, for store it follows from the fact that
stores to the same memory location from the same thread cannot be
reordered.

In the case of atomicrmw and cmpxchg instructions, stronger synchroniza-
tion is needed; representing them as an atomically-executed load followed by
a store could break the total order. Suppose thread 0 performs an atomic
increment of a memory location @x and later thread 1 increments the same
location; now, if the store buffer entry corresponding to the store in thread 0
is not flushed before the load in thread 1, the old value will be read in thread
1 and the result will be the same as if only one increment executed. The cor-
responding ordering is: load in thread 0, load in thread 1, store in thread
0, and store in thread 1. This ordering is possible even though both of the
load–store combinations are executed atomically, due to the fact that the
position of a store in the total order is determined by the moment in which
this store is flushed. To resolve this, these atomic operations can only be
performed if there are no atomic store entries for the given memory location
in any foreign store buffer. This way, a total ordering of these operations is
guaranteed.

Figures 4.8, 4.9, and 4.10 demonstrate the store buffer approximation of
the LLVM memory model for the case of simple shared variables, one of which
is accessed atomically. Figures 4.11, 4.12, and 4.13 show an illustration with
a fence instruction.

4.4.2 Nondeterministic Flushing

When a write is performed into a store buffer, it can be flushed into memory
at any later time. To simulate this nondeterminism, we introduce a thread
which is responsible for store buffer flushing. There will be one such flusher
thread for each store buffer. The interleaving of this thread with the other
threads will result in all the possible ways in which flushing can be done.
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int x;
std::atomic< bool > a;
void thread0() {

x = 42;
a.store( true, std::memory_order_release );

}
void thread1() {

while ( !a.load( std::memory_order_acquire ) { }
std::cout << x << std::endl; // always prints 42

}

This is an example of two threads which communicate using a shared global
variable x which is guarded by an atomic global variable a. Following is a
simplified execution of this programs (only load and store instructions are
shown).

main memory

@x @a

0 false

store buffer for thread 0 store buffer for thread 1

thread 0

store @x 42

store @a true release

thread 1
load @a acquire

load @x

1. Before the first instruction is executed, @x is initiated to 0 and @a
to false. Store buffers are empty. When thread 0 executes the first
instruction, the store will be performed into store buffer.

main memory

@x @a

0 false

store buffer for thread 0 store buffer for thread 1

@x 42 32 Unordered

thread 0

store @x 42

store @a true release

thread 1
load @a acquire

load @x

2. After the first instruction of thread 0, its store buffer contains an entry
with the address of the stored memory location, the stored value, its
bitwidth, and the memory ordering used for the store.

Figure 4.8: Example of the weak memory model simulation with store
buffers, part I.
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main memory

@x @a

0 false

store buffer for thread 0 store buffer for thread 1

@x 42 32 Unordered

@a true 8 Release

thread 0

store @x 42

store @a true release

thread 1
load @a acquire

load @x

3. Second entry is appended to the store buffer. If the first instruction of
thread 1 executed now, it would read false from the memory and the
cycle would be repeated.

main memory

@x @a

0 true

store buffer for thread 0 store buffer for thread 1

@x 42 32 Unordered

@a true 8 Release, flushed

thread 0

store @x 42

store @a true release

thread 1
load @a acquire

load @x

4. The entry for @a in the store buffer of thread 0 is flushed into memory,
but the entry is still remembered in the store buffer as it is a release
entry and future loads (if they have at least an acquire ordering) will
have to synchronize with it. It would be also possible to first flush the
entry for @x; in this case it would be removed from the store buffer as it
is the oldest entry, and therefore no explicit synchronization is necessary.

Figure 4.9: Example of the weak memory model simulation with store
buffers, part II.
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main memory

@x @a

0 true

store buffer for thread 0 store buffer for thread 1

@x 42 32 Unordered

@a true 8 Release, flushed

thread 0

store @x 42

store @a true release

thread 1
load @a acquire

load @x

5. When the first instruction of thread 1 is executed, a synchronization
takes place. The acquire load on @a forces the matching, flushed entry
in the store buffer of thread 0 to be evicted; however, this is a release
entry so all the entries which precede it will have to be flushed and
evicted too.

main memory

@x @a

42 true

store buffer for thread 0 store buffer for thread 1

thread 0

store @x 42

store @a true release

thread 1
load @a acquire

load @x

6. The load of @a in thread 1 now proceeds and the load of @x will always
return 42 as there is a synchronizes-with edge between the release store
and the acquire load of @a and therefore all action of thread 0 before
the store of @a are visible after the load of @a returns the stored value.

Figure 4.10: Example of the weak memory model simulation with store
buffers, part III.
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1 int x;
2 std::atomic< true > a;
3

4 void thread0() {
5 x = 42;
6 std::atomic_thread_fence( std::memory_order_release );
7 a.store( true, std::memory_order_monotonic );
8 }
9

10 void thread1() {
11 while ( !a.load( std::memory_order_relaxed ) { }
12 std::cout << x << std::endl; // can print 0 or 42
13 std::atomic_thread_fence( std::memory_order_acquire );
14 std::cout << x << std::endl; // always prints 42
15 }

This example is similar to the one in Figure 4.8; however, it uses explicit
fences to synchronize the access to the global variable x.

main memory

@x @a

0 false

store buffer for thread 0 store buffer for thread 1

@x 42 32 Unordered

Fence: Release

@a true 8 Monotonic, flushed

thread 0

store @x 42

fence release

store @a true monotonic

thread 1

load @a monot.

fence acquire

load @x

1. After all the instructions of thread 0 executed, the store buffer contains
two store entries and one fence entry which corresponds to the fence on
line 6.

Figure 4.11: Example of the weak memory model simulation with fences,
part I.
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main memory

@x @a

0 true

store buffer for thread 0 store buffer for thread 1

@x 42 32 Unordered

Fence: Release

@a true 8 Monotonic, flushed

thread 0

store @x 42

fence release

store @a true monotonic

thread 1

load @a monot.

fence acquire

load @x

2. The last entry from the store buffer is flushed but the entry remains in
the store buffer as it is preceded by a release entry.

main memory

@x @a

0 true

store buffer for thread 0 store buffer for thread 1

@x 42 32 Unordered

Fence: Release, observed by 1

@a true 8 Monotonic, flushed

thread 0

store @x 42

fence release

store @a true monotonic

thread 1

load @a monot.

fence acquire

load @x

3. The monotonic load of @a executes; the value is already flushed into
memory and the load does not cause any synchronization. It does,
however, add an observed flag with thread ID of the thread which
performed the load to any at least release barrier which precedes the
store buffer entry for @a. The observed flag would be also added to any
release (or stronger) store entries which precede the store entry for @a
and to the entry for @a if it was release or stronger.

Figure 4.12: Example of the weak memory model simulation with fences,
part II.
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main memory

@x @a

42 true

store buffer for thread 0 store buffer for thread 1

thread 0

store @x 42

fence release

store @a true monotonic

thread 1

load @a monot.

fence acquire

load @x

4. The fence executes. It is an acquire fence so it synchronizes with any (at
least) release fence which was observed by the thread which executed
the release fence (thread 1). This means that all the entries before all
the observed release fences have to be flushed and evicted and the fence
is flushed and evicted too. Finally, as the store entry for @a was already
flushed and it would be the first entry in the store buffer after the fence
is evicted, it is also evicted. The load of @x will always return 42.

Figure 4.13: Example of the weak memory model simulation with fences,
part III.

The flusher threads run an infinite loop; an iteration of this loop is enabled
if there are any entries in the store buffer associated with this flusher thread.
In each iteration of the loop, the flusher thread nondeterministically selects
an entry in the store buffer and flushes if it is possible (if there is no older
entry for a matching location).

4.4.3 Atomic Instruction Representation

Atomic instructions (cmpxchg and atomicrmw) are not transformed to the
LLVM memory model directly. Instead, they are first split into a sequence of
instructions which performs the same action (but not atomically) and this
sequence is executed under DIVINE’s mask. This sequence of instructions
contains loads and stores with atomic ordering derived from the atomic
ordering of the original atomic instruction and these instructions are later
transformed to the LLVM memory model. The sequence also contains an
explicit additional synchronization required to ensure a total ordering of all
the atomic instructions over the same memory location.

%res = atomicrmw op ty* %pointer, ty %value ordering

The atomic read-modify-write instruction atomically performs a load from
pointer with the given atomic ordering, then it performs a given operation
with the result of the load and value, and finally it stores the result into the
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pointer again, using the given atomic ordering. It yields the original value
loaded from pointer. The operation op can be one of exchange, add, sub,
and, or, nand, xor, max, min, umax, umin (the last two are unsigned minimum
and maximum, while the previous two perform signed versions). An example
of the transformation of this instruction can be seen in Figure 4.14.

%res = cmpxchg ty* %pointer, ty %cmp, ty %new
success_ordering failure_ordering ; yields { ty, i1 }

The atomic compare-and-exchange instruction atomically loads a value
from pointer, compares it with cmp and, if they match, stores new into
pointer. It returns a tuple which contains the original value loaded from
pointer and a boolean flag which indicates if the comparison succeeded.
Unlike the other atomic instructions, cmpxchg takes two atomic ordering ar-
guments; one which gives the ordering in the case of success and the other for
ordering in the case of failure. This instruction can be replaced by code which
performs a load with failure_ordering, comparison of the loaded value
and cmp and, if the comparison succeeds, an additional synchronization with
succeeds_ordering and a store with succeeds_ordering. The reason to
use failure_ordering in the load is that a failed cmpxchg should be equiv-
alent to a load with failure_ordering. The additional synchronization in
the case of success is needed to strengthen the ordering to success_ordering
and to ensure a total store order of all operations which affect the given mem-
ory location. An example of such a transformation can be seen in Figure 4.15.

4.4.4 Memory Order Specification

It is not always desirable to verify a program with the weakest possible
memory model. For this reason, the transformation can be parametrized
with a minimal ordering it guarantees for a given memory operation (each
of load, store, fence, atomicrmw, cmpxchg success ordering, and cmpxchg
failure ordering can be specified).

This way, memory models stronger than the LLVM memory model can
be simulated, for example total store order is equivalent to setting all of the
minimal orderings to release-acquire, the memory model of x86 (which is
basically TSO with sequentially consistent atomic compare and swap, atomic
read-modify-write, and fence) can be approximated by setting load to acquire,
store to release, and the remaining instructions to sequentially consistent.

4.4.5 Memory Cleanup

When a write to a certain memory location is delayed, it can happen that
this memory location becomes invalid before the delayed write is actually
performed. This can happen both for local variables and for dynamically
allocated memory. For local variables, the value might be written after the
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; some instructions before
%res = atomicrmw op ty* %pointer, ty %value ordering
; some instructions after

This will be transformed into:

; some instructions before
%0 = call i32 @__divine_interrupt_mask()
%atomicrmw.shouldunlock = icmp eq i32 %3, 0
%atomicrmw.orig = load atomic ty, ty* %ptr ordering
; explicit synchronization
%1 = bitcast ty * %ptr to i8*
call void @__lart_weakmem_sync(i8* %1, i32 width, i32 ordering)
; the instruction used here depends on op:
%opval = op %atomicrmw.orig %value
store atomic ty %opval, ty* %ptr seq_cst
br i1 %atomicrmw.shouldunlock,

label %atomicrmw.unmask,
label %atomicrmw.continue

atomicrmw.unmask:
call void @__divine_interrupt_unmask()
br label %atomicrmw.continue

atomicrmw.continue:
; some other instructions after, %res is replaced with
; %atomicrmw.orig

The implementation of op depends on its value, for example for exchange
there will be no instruction corresponding to op and the store will store
%value instead of %opval. On the other hand, max will be implemented using
two instructions (first the values are compared, then the bigger of them is
selected using the select instruction):

%1 = icmp sgt %atomicrmw.orig %value
%opval = select %1 %atomicrmw.orig %value

Figure 4.14: An example of the transformation of atomicrmw instruction
into an equivalent sequence of instructions which is executed atomically
using __divine_interrupt_mask and synchronized strongly with the other
operations using __lart_weakmem_sync.
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; some instructions before
%res = cmpxchg ty* %pointer, ty %cmp, ty %new

success_ordering failure_ordering
; some instructions after

This will be transformed into:

; some instructions before
%0 = call i32 @__divine_interrupt_mask()
%cmpxchg.shouldunlock = icmp eq i32 %6, 0
%cmpxchg.orig = load atomic ty, ty* %ptr failure_ordering
%1 = bitcast ty * %ptr to i8*
call void @__lart_weakmem_sync(i8* %1, i32 bitwidth,

i32 failure_ordering)
%cmpxchg.eq = icmp eq i64 %cmpxchg.orig, %cmp
br i1 %cmpxchg.eq,

label %cmpxchg.ifeq,
label %cmpxchg.end

cmpxchg.ifeq:
call void @__lart_weakmem_sync(i8* %1, i32 bitwidth,

i32 success_ordering)
store atomic ty %new, ty* %ptr success_ordering
br label %cmpxchg.end

cmpxchg.end:
%2 = insertvalue { ty, i1 } undef, ty %cmpxchg.orig, 0
%res = insertvalue { ty, i1 } %2, i1 %cmpxchg.eq, 1
br i1 %cmpxchg.shouldunlock,

label %cmpxchg.unmask,
label %cmpxchg.continue

cmpxchg.unmask:
call void @__divine_interrupt_unmask()
br label %cmpxchg.continue

cmpxchg.continue:
; some instructions after

Figure 4.15: An example of the transformation of the cmpxchg instruction
into an equivalent sequence of instructions which is executed atomically
using __divine_interrupt_mask and synchronized strongly with the other
operations using __lart_weakmem_sync.
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function exits, while for dynamic memory, the value might be stored after the
memory is freed.

To solve this problem, entries corresponding to invalidated memory need
to be removed from the local store buffer. The reason to leave the entries
in foreign store buffers is that the existence of such entries suggests that the
write to the (soon-to-be invalidated) memory location did not synchronize
properly with the end of the scope of the memory location.

For dynamic memory, it is sufficient to remove all entries corresponding
to the object just before the call to __divine_free which performs the
deallocation. For local variables, it is necessary to remove the entries just
before the function exits and to do this we employ the local variable cleanups
described in Section 4.2.3.

4.4.6 Integration with τ+ Reduction

As described in Section 3.2.5, one of the important reduction techniques in
DIVINE is the τ+ reduction, which allows execution of multiple consecutive
instructions in one atomic block if there is no more then one action observable
by other threads in this block. For example, a store instruction is observable
if and only if it stores to a memory block to which some other thread holds a
pointer.

This means that any load from or any store into store buffer will be
considered to be a visible action, because the store buffer has to be visible
both from the thread executing the load or the store and from the thread
which flushes the store buffer to memory.

To partially mitigate this issue, it was proposed in [42] to bypass the
store buffer when storing to addresses which are considered thread private
by DIVINE’s τ+ reduction. To do this, the __divine_is_private intrinsic
function is used in the function which implements weak memory store, and,
if the address to which the store is performed is indeed private, the store is
executed directly, bypassing the store buffer.

This reduction is indeed correct for TSO stores which were simulated in
[42]. It is easy to see that the reduction is correct if a memory location is
always private or always public for the entire run of the program. The first
case means that it is never accessed from more then one thread and therefore
no store buffer is needed, the second case means the store buffer will be used
always. If the memory location (say x) becomes public during the run of the
program, it is again correct (the publication can happen only by writing an
address of memory location from which x can be reached following pointers
into some already-public location):

• if x is first written and later published, then, were the store buffers used,
the value of x would need to be flushed from the store buffer before x



54 CHAPTER 4. PROPOSED LLVM TRANSFORMATIONS

could be reached from the other thread (because the stores cannot be
reordered under TSO), and therefore the observed values are the same
with and without the reduction;

• if x is first made private and then written, then the “making private”
must happen by changing some pointer in a public location, an action
which will be delayed by the store buffer. However, this action must
be flushed before the store to x in which it is considered private, as
otherwise x would not be private, and therefore also before any other
modifications to x which precede making x private;

• the remaining possibilities (x written after the publication, and x written
before making it private) are not changed by the reduction.

In the case of the general LLVM memory model with presence of explicit
atomic instructions, this reduction cannot be used: suppose a memory location
x is written while it is thread-private and later the address of x is written into
a visible location y. Now it might be possible, provided that y has weaker
than release ordering that the old value of x is accessed through y (if y is
flushed before x). For this reason, stores to all memory locations have to go
through the store buffer (unless it is possible to prove that they can never be
visible by more than one thread).

Furthermore, considering that all store buffers are reachable from all
threads, and therefore any memory location which has an entry in the store
buffer is considered public, we can bypass store buffers for load instructions,
even under LLVM memory model. That is, the store buffer lookup can be
bypassed for a memory location if it is considered private by DIVINE, because
no memory location which is private can have an entry in any store buffer.
This means that loads of private memory locations are no longer considered
as visible actions by τ+, which leads to a state space reduction.

As a final optimization, any load from or store into a local variable
which never escapes the scope of the function which allocated it need not
be instrumented; that is, load or store instruction need not be replaced
with the appropriate weak-memory-simulating version. To detect these cases,
we currently use LLVM’s PointerMayBeCaptured function to check if the
memory location of a local variable was ever written to some other memory
location. A more precise approximation could use pointer analysis to detect
which memory locations can only be accessed from one thread.

The evaluation of the proposed optimizations can be found in Section 5.2.1.

4.4.7 Interaction With Atomic Sections

An important consequence of the LLVM memory model transformation is that
effects of instructions which are executed inside DIVINE’s atomic sections
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(using __divine_interrupt_mask) need not happen as part of the atomic
section. For example, a store executed in an atomic section can be flushed
much later after the atomic sections ends. This creates additional requirements
to the implementation of libraries for DIVINE, namely the pthread threading
library. For this reason, any pthread function which uses atomic sections now
includes a sequentially consistent fence after the atomic section is entered and
before it is exited.

4.4.8 Implementation

The transformation implementation consists of two passes over LLVM bit-
code, the first one is used to split loads and stores larger than 64 bits into
smaller loads and stores. In the second phase, the bitcode is instrumented
with the LLVM memory model using functions which implement stores, loads,
and fences using store buffers and atomic functions are rewritten as de-
scribed in Section 4.4.3. The userspace functions simulating the memory
model are implemented in C++ and compiled together with the verified
program by divine compile. The userspace functions can be found in
lart/userspace/weakmem.h and lart/userspace/weakmem.cpp, the trans-
formation pass can be found in lart/weakmem/pass.cpp. The transformation
can be run using the lart binary, see Section A.2.4 for details on how to
compile and run LART.

Userspace Functions

The userspace interface is described by lart/userspace/weakmem.h, which
defines types and functions necessary for the transformation.

volatile extern int __lart_weakmem_buffer_size;

The store buffer size limit is saved in this variable so that it can be set by the
weak memory transformation.

enum __lart_weakmem_order {
__lart_weakmem_order_unordered,
__lart_weakmem_order_monotonic,
__lart_weakmem_order_acquire,
__lart_weakmem_order_release,
__lart_weakmem_order_acq_rel,
__lart_weakmem_order_seq_cst

};

An enumeration type which corresponds to LLVM atomic orderings.

void __lart_weakmem_store( char *addr, uint64_t value,
uint32_t bitwidth, __lart_weakmem_order ord );
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uint64_t __lart_weakmem_load( char *addr, uint32_t bitwidth,
__lart_weakmem_order ord );

void __lart_weakmem_fence( __lart_weakmem_order ord );

These functions replace store, load, and fence instructions. The transfor-
mation is expected to fill in the bitwidth parameter according to the actual
bit width of the loaded/stored type and to perform any necessary casts. Each
of these functions is performed atomically using DIVINE’s atomic mask. The
load function must be able to reconstruct the loaded value from several entries
in the store buffer as it is possible that some entry corresponds to only a part
of the requested value. While these functions are primarily intended to be
used by the LART transformation, their careful manual usage can be used to
manually simulate a weak memory model for a subset of operations.

void __lart_weakmem_sync( char *addr, uint32_t bitwidth,
__lart_weakmem_order ord );

This function is used for explicit synchronization of atomic instructions
(atomicrmw, cmpxchg) to ensure a total order of all atomic modifications.
The memory order must be at least monotonic, this function ensures that
there is no (at least) monotonic entry for a matching address in any foreign
store buffer.

void __lart_weakmem_cleanup( int cnt, ... );

This function is used to implement memory cleanups (Section 4.4.5). Its
variadic arguments are memory addresses which should be evicted from the
local store buffer, cnt should be set to the number of addresses provided.

void __lart_weakmem_memmove( char *dest, const char *src,
size_t n );

void __lart_weakmem_memcpy( char *dest, const char *src,
size_t n );

void __lart_weakmem_memset( char *dest, int c, size_t n );

These functions are used as replacements for llvm.memcpy, llvm.memset, and
llvm.memmove intrinsics. The transformation pass will derive two versions of
these functions, one to be used by the weak memory model implementation
(this version must not use store buffers) and the other to implement these
intrinsics in the weak memory model.

All of these functions have following attributes (using GCC/Clang syntax
__attribute__):

noinline to prevent inlining of these functions into their callers;
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flatten to inline all function calls these functions contain into their body
(this is used to make sure these functions do not call any function which
could use store buffers);

annotate("lart.weakmem.bypass") which indicates to the transformation
pass that these functions should not be transformed to use store buffers;

annotate("lart.weakmem.propagate") which indicates to the transforma-
tion pass that any function called from these functions should not be
transformed to use store buffers (this is done to handle cases in which
the compiler refuses to inline all calls into these functions; the transfor-
mation pass will output a warning if this happens).

LART Transformation Pass

The transformation pass processes all the functions in the module one by one.
For the weak memory implementation functions, it only transforms any calls
to llvm.memmove, llvm.memcpy, and llvm.memset intrinsics to calls to their
implementations which do not use store buffer simulation.

For other functions, the transformation is done in the following three
phases.

1. Atomic compound instructions (atomicrmw and cmpxchg) are replaced
by their equivalents as described in Section 4.4.3.

2. Loads and stores are replaced by calls to the appropriate userspace
functions. This includes casting of the addresses to the i8* LLVM type
and values need to be truncated or respectively extended to the i64
type. For non-integral types, this also includes a bitcast from (to)
integral types (a cast which does not change the bit pattern of the value,
changing only its type).

The atomic ordering used in the LLVM memory model simulation is
derived from the atomic ordering of the original instruction and from the
default atomic ordering for a given instruction type which is determined
by the configuration of the transformation (Section 4.4.4).

3. Memory intrinsics (llvm.memmove, llvm.memcpy, and llvm.memset)
are translated to the appropriate userspace functions which implement
these operations using store buffers.

The transformation is not applied to instructions which manipulate local
variables which do not escape the scope of the function which defines them.

The transformation is configurable. It can be specified what minimal
atomic ordering is guaranteed for each instruction type and what should be
the size bound for store buffers. The specification is given when LART is
invoked (see Section A.2.4), for atomic orderings it can be one of:
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std for the unconstrained LLVM memory model;

tso for Total Store Order simulation; this guarantees that all loads have at
least an acquire ordering, all stores have at least a release ordering, and
all the other operations have at least an acquire-release ordering.

x86 for simulation of a memory model similar to the one in x86 CPUs. In
this case, loads have at least an acquire ordering, stores have at least a
release ordering and all other transformed operations have a sequentially
consistent ordering.

custom specification is a comma separated list of kind=ordering pairs,
where kind is an instruction type (one of all, load, store, cas,
casfail, casok, armw, and fence) and ordering is the atomic or-
dering specification (one of unordered, relaxed,5 acquire, release,
acq_rel, and seq_cst). The list of these pairs is processed left to right
so that later entries override earlier ones.
For example, TSO can be specified as all=acq_rel, the equivalent of
x86 can be specified as all=seq_cst,load=acquire,store=release.

4.5 Code Optimization in Formal Verification
DIVINE aims at verification of real-world code written in C and C++. Both
LLVM IR and assembly produced from such code is often heavily optimized
during the compilation to increase its execution speed. To verify the code
as precisely as possible, it is desirable to verify the LLVM IR with all the
optimizations which will be used in the binary version of the program and
the binary should be compiled by the same compiler as the LLVM IR used
in DIVINE. Ideally, it would be possible to use the same LLVM IR for veri-
fication and to build the binary. This is, however, not currently possible as
DIVINE needs to re-implement library features (namely pthreads and C++
exception handling) and this implementation might not be compatible with
the implementation used on given platform. Nevertheless, DIVINE should use
the optimization levels requested by its user for the program compilation.

On the other hand, it is desirable to utilize LLVM optimizations in such a
way that model checking can benefit from it. This, however, requires special
purpose optimizations designed for the verification, as the general purpose
optimizations do not meet two critical requirements for verification.

• They can change satisfiability of the verified property. This is
usually caused by the fact that compiler optimizations are not required
to preserve behaviour of parallel programs, and that many programs

5In this case relaxed is used to denote the LLVM’s monotonic ordering to match the
name used for this ordering in the C++11/C11 standard.
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written in C/C++ contain undefined behaviour as they access non-
atomic non-volatile variables from multiple threads. See Figure 4.16 for
an example of such a property-changing optimization.

• They might increase state space size. Not all optimizations which
lead to faster execution lead to faster verification as they might change
program behaviour in such a way that the model checker generates more
states. An example of such a transformation can be any transformation
which increases the number of registers in a function. This might
cause states which were originally considered to be the same to become
distinct after the optimization. More specifically, examples of such
transformation are promotion of variables into registers, loop unrolling,
and loop rotation which can be seen in Figure 4.17.

For these reasons, we suggest some optimization techniques which would
allow optimization of LLVM IR but not change the verification outcome or
increase the state space size. On the other hand, these techniques can use
specific knowledge about the verification environment they will be used in.
Some of these techniques were already implemented as part of this thesis and
are evaluated in Section 5.3, some of them are proposals for future work.

4.5.1 Constant Local Variable Elimination

Especially with optimizations disabled, compilers often create alloca in-
structions (which correspond to stack-allocated local variables) even for local
variables which need not have an address and perform loads and stores into
those memory locations instead of keeping the value in registers. To eliminate
unnecessary alloca instructions, LLVM provides a register promotion pass.
Nevertheless, this pass is not well suited for model checking as it can add
registers into the function and in this way increase the state space size. For
this reason, we introduce a pass which eliminates constant local variables, as
these can be eliminated without adding registers (in fact, some registers can
be removed in this case).

With this reduction, an alloca instruction can be eliminated if the fol-
lowing conditions are met:

• the address of the memory is never accessed outside of the function;
• it is written only once;
• the store into the alloca dominates all loads from it.

The first condition ensures that the alloca can be deleted, while the other
two conditions ensure that the value which is loaded from it is always the
same, and therefore can be replaced with the value which was stored into the
alloca.
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int x;
void foo() {

x = 1;
assert( x == 1 );

}
int main() {

std::thread t( &foo );
x = 2;
t.join();

}

This code is an example of an undefined behaviour. The global non-atomic
variable x is written concurrently from two threads. For this program, assertion
safety does not hold: the assertion can be violated if the assignment x = 2
executes between x = 1 and assert( x == 1 ).

store i32 1, i32* @x, align 4
%0 = load i32, i32* @x, align 4
%tobool = icmp ne i32 %0, 0
%conv = zext i1 %tobool to i32
call void @__divine_assert(i32 %conv)
ret void

The body of foo emitted by Clang without any optimization is a straightfor-
ward translation of the C++ code. It stores into global @x, then loads it and
compares the loaded value to 0. In this case, DIVINE will report an assertion
violation.

store i32 1, i32* @x, align 4
tail call void @__divine_assert(i32 1)
ret void

This is optimized (-O2) version of foo. The store is still present, but the
compiler assumes that the load which should follow it will return the save value
as written immediately before it (this is a valid assumption for non-atomic,
non-volatile shared variable). For this reason, the assertion is optimized into
assert( true ) and no assertion violation is possible.

Figure 4.16: An example of program in which optimizations change whether
a property holds.
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Suppose a program with a global atomic boolean variable turn and a code
snippet which waits for this value to be set to true:

while ( !turn ) { }
// rest of the code

This program might generate following LLVM:

loop:
%0 = load atomic i8, i8* @turn seq_cst
%1 = icmp eq i8 %0, 0
br %1, label %loop, label %end

end:
; rest of the code

With optimization, this LLVM can be changed to:

pre:
%0 = load atomic i8, i8* @turn seq_cst
%1 = icmp eq i8 %0, 0
br %1, label %loop, label %end

loop:
%2 = load atomic i8, i8* @turn seq_cst
%3 = icmp eq i8 %2, 0
br %3, label %loop, label %end

end:
; rest of the code

Basically the loop is rotated to a loop equivalent to the following code:

if ( !trun ) {
do { } while ( !turn ) { }

}

While this code might be faster in practice due to branch prediction, for model
checking this is an adverse change as the model checker can now distinguish
the state after one and two executions of the original loop based on register
values.

Figure 4.17: An example of optimization with an adverse effect on model
checking.
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In the current implementation of this pass, each function is searched for
alloca instructions which meet these criteria (ignoring uses of address in
the llvm.dbg.declare intrinsic6) and all uses of results of loads from these
memory locations are replaced with the value which was originally stored into
it; finally the alloca and all its uses are eliminated from the function. Please
note that the conditions ensure that the only uses of the alloca are the single
store into it, the loads which read it, and llvm.dbg.declare intrinsics.

4.5.2 Constant Global Variable Annotation

In DIVINE, any non-constant global variable is considered to be visible by all
threads and is saved in each state in the state space. However, it can happen
that this variable cannot be changed during any run of the program. If such
a condition can be detected statically, it is possible to set this variable to be
constant which removes it from all states (it is stored in constants, which are
part of the interpreter state) and it also causes the loads of this variable to
be considered to be invisible actions by τ+ reduction.

For a global variable to be made constant in this way, it must meet the
following conditions:

• it must be never written to, neither directly nor through any pointer;
• it must have a constant initializer.

While the second condition can be checked from the definition of the
global variable, the first one cannot be exactly efficiently determined. It can
be approximated using pointer analysis.

Currently, LART lacks working pointer analysis, so we used a simple
heuristic for the initial implementation: the address of the global variable
must not be stored into any memory location and any value derived from
the address must not be used in instructions which can store into it (store,
atomicrmw, cmpxchg). This is implemented by recursively tracking all uses of
the values derived from the global variable’s address. The implementation is
available in lart/reduction/globals.cpp.

4.5.3 Local Variable and Register Zeroing

LLVM registers are immutable and therefore they retain their value even after
it is no longer useful. This means that there can be states in the state space
which differ only in a value of a register which does not change the execution
of the program as it will be never used again. This situation can be eliminated
by setting the no-longer-used registers to 0. However, this is not possible in
LLVM as it is in a static single assignment form.

6This intrinsic is used to bind debugging information such as a variable name with the
variable’s LLVM IR representation. It does not affect the behaviour of the program in any
way.
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Nevertheless, with addition of one intrinsic function into the DIVINE’s
LLVM interpreter, it is possible to zero registers in DIVINE at the place
determined by the call to this intrinsic. Since LLVM is type safe, this intrinsic is
actually implemented as a family of functions with __divine_drop_register.
prefix, one for each type of register which needs to be zeroed. Signatures for
these functions are generated automatically by the LART pass which performs
register zeroing. Any call to a function with this prefix is implemented as an
intrinsic which zeroes the register and sets it as uninitialized.

The LART pass (which is implemented in lart/reduce/register.cpp)
processes each function with the following algorithm.

1. For each instruction i, it searches for last uses:

• this is either a use u such that no other use of i is reachable from
u;

• or a use u which is part of a loop and all the uses of i reachable
from it are in the same loop.

2. Insertion points for __divine_drop_register calls are determined:

• for the uses which are not in a loop, the insertion point is set to
be immediately after the use;

• for the uses which are in a loop, the insertion point is at the
beginning of any basic block which follows the loop.

Strongly connected components of the control flow graph of the function
are used to determine if an instruction is in a loop and successors of a
loop.

3. If an instruction i dominates an insertion point, i is dropped at this
point using __divine_drop_register.

Furthermore, if the instruction in question is an alloca, it is treated
specially. alloca cannot be zeroed until the local variable it represents is
released. A simple heuristic is used to determine if the local variable might
be aliased, and if not, it is dropped immediately before the register which
corresponds to its alloca is zeroed. Otherwise the register is not zeroed and
the alloca will be released automatically by DIVINE.

4.5.4 Terminating Loop Optimization

In DIVINE a loop will generate a state at least once an iteration. This is
caused by the heuristic which makes sure that state generation terminates.
However, if the loop performs no visible action and always terminates, it is
possible to run it atomically. This way, the entire loop is merged into one
action, which leads to further reduction of the state space size.
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This reduction is not implemented yet; however, to implement it, it would
be necessary to have the following components:

1. loop detection, this is possible using LLVM’s LoopAnalysis;
2. termination analysis for LLVM loops, which requires recovery of loop

condition from LLVM IR and should employ some existing termination
detection heuristic;

3. pointer analysis to detect if the loop accesses any variable which is
(or might be) accessible from other threads; it is also possible to use
__divine_is_private to detect visibility dynamically, or combine these
approaches.

4.5.5 Nondeterminism Tracking

DIVINE is an explicit state model checker and it does not handle data non-
determinism well. Nevertheless, data nondeterminism is often useful, for
example to simulate input or random number generation by a variable which
can have an arbitrary value from some range. The only way to simulate such
nondeterminism in DIVINE is to enumerate all the possibilities explicitly, us-
ing __divine_choice. This, of course, can lead to a large state space, as it
causes branching of the size given by the argument of __divine_choice.

Nevertheless, for small domains, this handling of nondeterminism is quite
efficient, as it does not require any symbolic data representation. This
way, __divine_choice is used for example to simulate the failure of malloc:
malloc can return a null pointer if the allocation is not possible and DIVINE
simulates this in such a way that any call to malloc nondeterministically
branches into two possibilities; either the malloc succeeds and returns memory,
or it fails. Similarly, weak memory model simulation (Section 4.4) uses
nondeterministic choice to determine which entry of the store buffer should
be flushed.

For the verification of real-world programs, it is useful to be able to
constrain nondeterminism which can occur in them, for example as a result
of a call of the rand function, which returns a random number from some
interval, usually from 0 to 231 − 1. Such a nondeterminism is too large to be
handled explicitly. Nevertheless, it often occurs in patterns like rand() % N
for some fixed and usually small number N. In these cases, it is sufficient to
replace rand() % N with __divine_choice( N ) which might be tractable
for sufficiently small values of N.

To automate this replacement, at least in some cases an LLVM pass which
tracks nondeterministic values and constraints the nondeterministic choice to
the smallest possible interval can be created. A very simple implementation
of such a pass which tracks nondeterminism only inside one function and
recognizes two patterns, a cast to bool and modulo constant number, can
be found in lart/svcomp/svcomp.cpp, class NondetTracking. For a more
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complete implementation, limited symbolic execution of the part of the pro-
gram which uses the nondeterministic value could be used. This version is
not implemented yet.

4.6 Transformations for SV-COMP 2016

SV-COMP is a competition of software verifiers associated with the TACAS
conference [12]. It provides a set of benchmarks in several categories, the
benchmarks being written in C. DIVINE is participating in SV-COMP 2016
in the concurrency category which contains several hundred of short parallel
C programs. Some of these programs have an infinite state space (usually
infinite number of threads), or use nondeterministic data heavily and therefore
are not tractable by DIVINE. There are, however, many programs which can
be verified by DIVINE, with some minor tweaks.

In order to make it possible to verify the SV-COMP programs with
DIVINE, they have to be pre-processed, as they use some SV-COMP-specific
functions and rely on certain assumptions about the semantics of C which are
not always met when C is compiled into LLVM.

1. The benchmark is compiled using divine compile.

2. Using LART, atomic sections used in SV-COMP are replaced with
DIVINE’s atomic sections which use __divine_interrupt_mask.

3. Using LART, all reads and writes to global variables defined in the
benchmark are set to be volatile. This is done because SV-COMP
models often contain undefined behaviour, such as concurrent access to
non-volatile, non-atomic variables, which could be optimized improperly
for SV-COMP. This pass actually hides errors in SV-COMP benchmarks;
nevertheless, it is necessary, since SV-COMP benchmarks assume any
use of shared variable will cause a load from it, which is not required by
the C standard.

4. LLVM optimizations are run, using LLVM opt with -Oz (optimizations
for binary size).

5. Nondeterminism tracking (Section 4.5.5) is used.

6. LART is used to disable nondeterministic failures in malloc since SV-
COMP assumes that malloc never fails.

7. Finally, DIVINE is run on the program with Context-Switch-Directed
Reachability [40] and assertion violations are reported if there are any.
Other errors are not reported.
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With these transformations, DIVINE is expected to score more than 900
points out of 1222 total in the concurrency category. A report which describes
our approach is to appear in TACAS proceedings [41]. The implementation
of these transformations can be found in the lart/svmcomp/ directory.



Chapter 5

Results

In this chapter we will evaluate the transformations proposed in Chapter 4. All
measurements were done on Linux on x86_64 machines with enough memory
to run verification of the program in question. All numbers are taken from
DIVINE’s report (--report was passed to the verify command). Number
of states is States-Visited from the report, which is the number of unique
states in the state space of the program; memory usage is Memory-Used from
the report, which is the peak of the total memory used during the verification.
All measurements were performed with the lossless tree compression enabled
(--compression) [36] and, unless explicitly stated otherwise, the default
setting of τ+ reduction (which includes the changes described in Section 4.1.3).

Please note that the results in cases when the property does not hold
depend on the timing and number of processors used for the evaluation. To
make these results distinguishable, they are marked with dagger (†) superscript.
Programs used in the evaluation are described in Table 5.1.

5.1 Extensions of τ+ Reduction

Table 5.2 shows state space sizes of several models with the original τ+
reduction and with the extensions described in Section 4.1.3. It also includes
state space sizes in DIVINE 3.3, which is the version before any modification
described in this thesis. While both DIVINE 3.3 and the new version with
the original reduction implement the same reduction strategy, the numbers
can differ because of bugs which were fixed since DIVINE 3.3. The first bug
is that DIVINE 3.3 never considered memcpy to be a visible operation, which
could cause some runs to be missed; with this bug fixed, the state space size
can grow. The second bug is that if a visible instruction is at the beginning of
a basic block, DIVINE 3.3 emitted a state immediately after this instruction;
fixing this bug could cause the state space size to decrease. Finally, there was
a bug in the calculation of visibility of a memory location; this information
was improperly cached even over operations which could change the value.

67
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simple A program similar to the one in Figure 4.7; two threads, each
of them reads a value written by the other one. An assertion
violation can be detected with total store order. Written in
C++; does not use C++11 atomics.

peterson A version of the well-known Peterson’s mutual exclusion
algorithm; valid under sequential consistency, not valid under
total store order or any more relaxed model. Written in
C++, no C++11 atomics.

fifo A fast communication queue for producer-consumer use with
one producer and one consumer. This queue is used in
DIVINE when running in a distributed environment. The
queue is designed for x86; it is correct unless stores can be
reordered. Written in C++, the queue itself does not use
C++11 atomics, the unit test does use one relaxed (mono-
tonic) atomic variable.

fifo-at A modification of fifo which uses C++11 atomics to ensure
it works with memory models more relaxed than TSO.

fifo-bug An older version of fifo which contains a data race.
hs-T-N-E A hight-performance, lock-free shared memory memory hash

table used in DIVINE in shared memory setup [9]. Written
in C++, uses C++11 atomics heavily, mostly with the se-
quentially consistent ordering. This model is parametrized;
T is the number of threads, N is the number of elements
inserted by each thread (elements inserted by each thread
are distinct), and E is the number of extra elements which
are inserted by two threads.

pt-rwlock A test for a reader-writer lock in C.
collision A collision avoidance protocol written in C++, described in

[20].
lead-dkr A leader election algorithm written in C++, described in [16].
elevator2 This model is a C++ version of the elevator model from the

BEEM database [28]. It is a simulation of elevator planning.

Table 5.1: Description of programs used in the evaluation.
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Name DIVINE
3.3

Old +
Control

Flow

+
Indep.
Load

New Reduc-
tion

fifo 1.84 k 1.79 k 1.77 k 793 791 2.32×
fifo-bug 6.64 k† 6.61 k† 6.45 k† 2.88 k† 2.88 k† 2.31×
lead-dkr 29.9 k 132 k 132 k 58.2 k 58.1 k 0.51×
collision 3.06 M 3.28 M 3.28 M 1.96 M 1.96 M 1.56×
pt-rwlock 14.2 M 14.2 M 8.66 M 6.54 M 4.48 M 3.18×
elevator2 18.6 M 18.2 M 18.2 M 17.7 M 17.7 M 1.05×
hs-2-1-0 error 1.88 M 1.87 M 1.01 M 891 k 2.1×
hs-2-1-1 error 2.87 M 2.87 M 1.51 M 1.34 M 2.14×
hs-2-2-2 error 4.99 M 4.99 M 2.62 M 2.33 M 2.14×

Table 5.2: Evaluation of the improved τ+ reduction. DIVINE 3.3 is used as
a reference, as it does not include any changes described in this thesis. Old
corresponds to the original τ+ reduction with several bugfixes, + Control Flow
includes control flow loop detection optimization, + Indep. Load includes
independent loads optimization, New includes both optimizations. DIVINE
3.3 was not able to verify the hash set benchmarks.

We can see in the table that in all but one case, the extended τ+ reduction
performs better than DIVINE 3.3 and in all cases it performs better than the
implementation of the original reduction in the new version of DIVINE. The one
exception is lead-dkr; the reason is that this program uses memcpy heavily and
therefore is affected by the bug fix. If we consider the fixed implementation as
the baseline for lead-dkr, the new reduction represents a 2.27× improvement.
Overall, the improvement was 1.05× to 3.18× for benchmarked models, which
is a good improvement on the already heavy reduction of the original τ+.
We can also see that the independent loads optimization has a higher impact
than the control flow loop detection optimization, but the latter still provides
a measurable improvement (up to 1.5× reduction).

5.2 Weak Memory Models

We evaluated relaxed memory models on the same benchmarks as in [42]
and additionally on a unit test for a concurrent hash table (hs-2-1-0). We
used Context-Switch-Directed-Reachability algorithm [40] in all weak memory
model evaluations, as it tends to find bugs in programs with weak memory
models faster (it explores runs with fewer context switches and therefore fewer
store buffer flushes earlier).

Table 5.3 shows state space sizes for programs with weak memory model
simulation and compares them to the state space size of the original program.
We can see that the size increase varies widely, but the increase is quite large,
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Name SC TSO TSO: Size Increase
- 1 2 3 1 2 3

simple 127 3.45 k† 5.97 k† 15.7 k† 27.1× 47× 123×
peterson 703 21.8 k† 53.4 k† 55.7 k† 31.1× 76× 79.2×
fifo 791 14.9 k 35.9 k 48.8 k 18.8× 45.3× 61.7×
fifo-at 717 39.5 k 167 k 497 k 55.1× 232× 693×
fifo-bug 1.61 k† 11.3 k† 44.2 k† 68.7 k† 7.01× 27.4× 42.6×
hs-2-1-0 891 k 250 M – – 281× – –

Name SC STD STD: Size Increase
- 1 2 3 1 2 3

simple 127 3.52 k† 8.07 k† 23.6 k† 27.7× 63.6× 186×
peterson 703 22 k† 56.3 k† 69.8 k† 31.3× 80.1× 99.3×
fifo 791 18.3 k 15.6 k† 23 k† 23.1× 19.8× 29.1×
fifo-at 717 53.5 k 256 k 1.07 M 74.6× 357× 1489×
fifo-bug 1.61 k† 12.1 k† 14.1 k† 21.1 k† 7.53× 8.78× 13.1×
hs-2-1-0 891 k 251 M – – 282× – –

Table 5.3: A summary of the number of states in the state space for different
weak memory simulation settings. The first line specifies the memory model
(SC = Sequential Consistency, that is no transformation, TSO = Total Store
Order, STD = the LLVM memory model). The second line gives store buffer
size.

anywhere from 7× to 282× for a store buffer with only one slot. We can also
see that the difference between total store order and more relaxed memory
models is not as significant as the store buffer size increase, suggesting that
there is still room for optimization of the TSO simulation. Benchmark hs-2-
1-0 shows that the weak memory model simulation is not yet easily applicable
to more complex real-world code; in this case, the verification required 31.1 GB
of memory and almost half a day of runtime on 48 cores, while larger versions
of this model did not fit into a 100GB memory limit. Nevertheless, for smaller
real-world tests, such as fifo, the weak memory model simulation can be
used even on a common laptop.

5.2.1 Effects of Optimizations

The optimizations described in Section 4.4.6 were first evaluated in the context
of the TSO memory model simulation presented in [42]. The results of this
initial evaluation can be seen in Table 5.4. This evaluation does not include
any changes in τ+ reduction. We can see that the effects of the optimizations
are significant, especially for private loads optimization.

The same optimizations were evaluated in the final version of the trans-
formation, these results can be seen in Table 5.5. Please note that while the
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Name MEMICS + Load Private + Locals
fifo-1 44M 5.6M 7.9× 1.2M 36×
fifo-2 338M 51M 6.6× 11M 30×
fifo-3 672M 51M 13× 11M 60×
simple-1† 538 k 19 k 28× 11 k 48×
peterson-2† 103 k 40 k 2.6× 24 k 4.1×
pt_mutex-2 1.6M 12 k 135× 7.5 k 216×

Table 5.4: Effects of private load optimization and local private variable
optimization on the implementation from [42]. The number after model
name is the store buffer size. The MEMICS column shows the state space
size for the original transformation, + Load Private shows the state space
size and reduction over MEMICS for the optimization which bypasses store
buffers for thread-private memory locations; finally, + Locals also includes
the optimization which does not transform manipulations with local variables
which do not escape the scope of the function.

original transformation bypassed store buffers for thread-private stores, the
version proposed in this work does not, as this optimization is not correct for
the LLVM memory model. Nevertheless, the new version performs an order of
magnitude better in all cases, both thanks to enhanced state space reductions
and a more efficient implementation.1

We can see that the effect of the optimizations of the store buffer implemen-
tation varies significantly, but overall the improvement is an approximately
three-fold reduction, with a peak at fifo-at which is reduced up to several
hundred times. This suggests that these reductions can have stronger effects
on bigger programs. However, due to time and resource constraints, we were
not able to verify this hypothesis with other large programs.

Table 5.6 shows the effects of extended τ+ reduction on the LLVM memory
model simulation. We can see that while the overall reduction is similar to
the effects of the improved τ+ reduction on programs without the memory
model simulation, the reason is different. In this case, the improvement
is thanks to the improved control flow cycle detection mechanism and the
independent loads optimization has no effect. The cause is that load, store,
and fence instructions are replaced with calls, and without the control flow
cycle detection improvement it was not possible to perform two calls to the
same function on one edge in the state space.

1Namely, the flusher thread is now implemented in such a way that is is guaranteed that
if the store buffer associated with it contains a single entry and this entry is flushed, the
resulting state of the flusher thread will be the same as the state of the flusher thread before
the first entry is inserted into the store buffer.



72 CHAPTER 5. RESULTS

Name No opt. + Locals + Load Private
simple-tso-1† 16.5 k 16.5 k 1× 3.45 k 4.79×
simple-tso-2† 29.3 k 29.3 k 1× 5.97 k 4.9×
simple-tso-3† 42 k 42 k 1× 15.7 k 2.68×
simple-std-1† 16.6 k 16.6 k 1× 3.52 k 4.7×
simple-std-2† 29.8 k 29.8 k 1× 8.07 k 3.69×
simple-std-3† 51.6 k 51.6 k 1× 23.6 k 2.18×
peterson-tso-1† 60 k 59.9 k 1× 21.8 k 2.75×
peterson-tso-2† 149 k 149 k 1× 53.4 k 2.79×
peterson-tso-3† 144 k 144 k 1× 55.7 k 2.59×
peterson-std-1† 60.2 k 60.2 k 1× 22 k 2.74×
peterson-std-2† 154 k 154 k 1× 56.3 k 2.72×
peterson-std-3† 168 k 168 k 1× 69.8 k 2.41×
fifo-tso-1 43.5 k 43.5 k 1× 14.9 k 2.92×
fifo-tso-2 110 k 110 k 1× 35.9 k 3.08×
fifo-tso-3 159 k 159 k 1× 48.8 k 3.26×
fifo-std-1 53.2 k 53.2 k 1× 18.3 k 2.91×
fifo-std-2† 45.5 k 46.4 k 0.98× 15.6 k 2.91×
fifo-std-3† 74.7 k 74.9 k 1× 23 k 3.25×
fifo-at-tso-1 314 k 121 k 2.58× 39.5 k 7.93×
fifo-at-tso-2 1.11 M 522 k 2.12× 167 k 6.64×
fifo-at-tso-3 5.46 M 1.46 M 3.75× 497 k 11×
fifo-at-std-1 433 k 166 k 2.6× 53.5 k 8.09×
fifo-at-std-2 32.2 M 739 k 43.6× 256 k 126×
fifo-at-std-3 – 2.8 M – 1.07 M –
fifo-bug-tso-1† 34.1 k 35.9 k 0.95× 11.3 k 3.02×
fifo-bug-tso-2† 141 k 141 k 1× 44.2 k 3.18×
fifo-bug-tso-3† 220 k 218 k 1.01× 68.7 k 3.21×
fifo-bug-std-1† 37.3 k 34.5 k 1.08× 12.1 k 3.07×
fifo-bug-std-2† 43.9 k 43.7 k 1× 14.1 k 3.1×
fifo-bug-std-3† 69.9 k 69.8 k 1× 21.1 k 3.31×

Table 5.5: Effects of private load optimization and local private variable
optimization on the LLVM memory model simulation. The No opt. column
includes none of the optimizations from Section 4.4.6, + Locals does not
instrument stores into local variables which do not escape the scope of the
function, and + Load Private also bypasses store buffers for loads from memory
which is considered thread-private by DIVINE.
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Name Orig.
τ+

+
Control

Flow

+ Indep.
Loads

New Reduc-
tion

simple-tso-1† 5.88 k 3.45 k 5.88 k 3.45 k 1.7×
simple-tso-2† 10.9 k 5.97 k 10.9 k 5.97 k 1.82×
simple-tso-3† 24.6 k 15.7 k 24.6 k 15.7 k 1.57×
simple-std-1† 5.9 k 3.52 k 5.9 k 3.52 k 1.68×
simple-std-2† 13.4 k 8.07 k 13.4 k 8.07 k 1.66×
simple-std-3† 32.4 k 23.6 k 32.4 k 23.6 k 1.37×
peterson-tso-1† 25.4 k 21.9 k 25.4 k 21.9 k 1.16×
peterson-tso-2† 63 k 53.4 k 63 k 53.4 k 1.18×
peterson-tso-3† 65.7 k 55.7 k 65.7 k 55.7 k 1.18×
peterson-std-1† 25.5 k 22 k 25.5 k 22 k 1.16×
peterson-std-2† 66.4 k 56.4 k 66.4 k 56.4 k 1.18×
peterson-std-3† 81.4 k 69.8 k 81.4 k 69.8 k 1.17×
fifo-tso-1 39.1 k 14.9 k 39.1 k 14.9 k 2.63×
fifo-tso-2 100 k 35.9 k 100 k 35.9 k 2.8×
fifo-tso-3 144 k 48.8 k 144 k 48.8 k 2.95×
fifo-std-1 48.3 k 18.3 k 48.3 k 18.3 k 2.64×
fifo-std-2† 41.6 k 15.7 k 41.6 k 15.7 k 2.65×
fifo-std-3† 66.1 k 23.4 k 66.1 k 23.4 k 2.83×
fifo-at-tso-1 114 k 39.5 k 114 k 39.5 k 2.89×
fifo-at-tso-2 490 k 167 k 490 k 167 k 2.94×
fifo-at-tso-3 1.39 M 497 k 1.39 M 497 k 2.79×
fifo-at-std-1 157 k 53.5 k 157 k 53.5 k 2.93×
fifo-at-std-2 704 k 256 k 704 k 256 k 2.75×
fifo-at-std-3 2.63 M 1.07 M 2.63 M 1.07 M 2.47×
fifo-bug-tso-1† 32.4 k 11.9 k 32.4 k 11.9 k 2.72×
fifo-bug-tso-2† 129 k 45.5 k 129 k 45.5 k 2.83×
fifo-bug-tso-3† 201 k 66.4 k 201 k 66.4 k 3.02×
fifo-bug-std-1† 33.7 k 12.1 k 33.7 k 12.1 k 2.79×
fifo-bug-std-2† 39.8 k 14.2 k 39.8 k 14.2 k 2.81×
fifo-bug-std-3† 63 k 21.5 k 63 k 21.5 k 2.93×

Table 5.6: Effects of the extended τ+ reduction on the LLVM memory model
simulation. Reduction shows the best achieved reduction.
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5.3 LLVM IR Optimizations
We also evaluated transformations intended for state space reduction presented
in Section 4.5. Namely, constant local variable elimination (Section 4.5.1,
labelled const alloca in tables, the paropt pass in LART), constant global
variable annotation (Section 4.5.2, labelled const global in tables, the globals
pass in LART), register zeroing (Section 4.5.3, labelled register zero in tables,
the register pass in LART) and an older version of register zeroing pass
which zeroes only values of local variables (labelled alloca zero in tables, the
alloca pass in LART). We also evaluated combinations of these optimizations.
Please note that the order of the combination of these passes matters, constant
local variable elimination must precede register (or local variable) zeroing.
Constant global variable annotation does not interfere with any of the other
reductions.

In Table 5.7 we can see the effect of these optimizations on the state space
size. The only optimization with visible effect on state space size is constant
local variable elimination. The effect of constant local variable elimination
in not large and it is likely due to elimination of some registers which could
have been used to distinguish otherwise equivalent states.

In Table 5.8 we can see the effect of the same optimizations on the memory
required for verification with lossless compression of the state space. While
these values are subject to some variation caused by the used compression
technique,2 we can see that memory-wise, the reductions have bigger effect.
Namely, we can see that constant global variable annotation has a positive
effect on memory requirements.

Finally, in Table 5.9, we can see the effect of the two most significant
LART optimizations, constant local variable elimination and constant global
variable annotation, on programs with the LLVM memory model simulation.
We can see that these optimizations reduced state space size up to two times.
We were not able to include more of hash set tests into this table due to their
size.

2We use tree compression [36]. The efficiency of this reduction technique depends on the
layout and the size of the state and on the patterns of changes in states. For this reason,
even a slight variation in state layout can cause measurable difference in the compression
ratio. Although these differences are much smaller than the overall effect of the compression,
they are still visible in the table.
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Name fi
fo

fi
fo
-b
ug

co
ll
is
io
n

pt
-r
wl
oc
k

el
ev
at
or
2

no LART 791 2876† 1.96 M 4.48 M 17.7 M
const alloca 791 2876† 1.96 M 4.47 M 11.5 M
const global 791 2876† 1.96 M 4.48 M 17.7 M
alloca zero 791 2876† 1.96 M 4.48 M 17.7 M
register zero 791 2876† 1.96 M 4.48 M 17.7 M
CA + CG 791 2876† 1.96 M 4.47 M 11.5 M
CA + CG + AZ 791 2876† 1.96 M 4.47 M 11.5 M
CA + CG + RZ 791 2876† 1.96 M 4.47 M 11.5 M
Reduction 1× 1× 1× 1× 1.54×

Name le
ad
-d
kr

hs
-2
-1
-0

hs
-2
-1
-1

hs
-2
-2
-2

no LART 58.1 k 891 k 1.34 M 2.33 M
const alloca 43.4 k 875 k 1.32 M 2.29 M
const global 58.1 k 891 k 1.34 M 2.33 M
alloca zero 58.1 k 904 k 1.36 M 2.35 M
register zero 58.1 k 891 k 1.34 M 2.33 M
CA + CG 43.4 k 875 k 1.32 M 2.29 M
CA + CG + AZ 43.4 k 888 k 1.33 M 2.31 M
CA + CG + RZ 43.4 k 875 k 1.32 M 2.29 M
Reduction 1.34× 1.02× 1.02× 1.02×

Table 5.7: Effects of LART optimizations on state space size. Reduction
shows the best achieved reduction.
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Name fi
fo

fi
fo
-b
ug

co
ll
is
io
n

pt
-r
wl
oc
k

el
ev
at
or
2

no LART 380 MB 380 MB† 476 MB 1.02 GB 1.24 GB
const alloca 335 MB 344 MB† 478 MB 1.01 GB 1.16 GB
const global 380 MB 382 MB† 501 MB 1.06 GB 1.09 GB
alloca zero 396 MB 394 MB† 513 MB 1.06 GB 1.39 GB
register zero 382 MB 379 MB† 501 MB 1.05 GB 1.37 GB
CA + CG 331 MB 331 MB† 476 MB 0.99 GB 1.27 GB
CA + CG + AZ 331 MB 331 MB† 476 MB 0.99 GB 1.27 GB
CA + CG + RZ 335 MB 335 MB† 477 MB 0.99 GB 1.26 GB
Reduction 1.15× 1.15× 1× 1.03× 1.14×

Name le
ad
-d
kr

hs
-2
-1
-0

hs
-2
-1
-1

hs
-2
-2
-2

no LART 644 MB 1.14 GB 1.15 GB 1.21 GB
const alloca 346 MB 559 MB 823 MB 883 MB
const global 385 MB 916 MB 923 MB 986 MB
alloca zero 398 MB 948 MB 969 MB 1.02 GB
register zero 414 MB 914 MB 925 MB 983 MB
CA + CG 337 MB 547 MB 826 MB 853 MB
CA + CG + AZ 334 MB 548 MB 831 MB 853 MB
CA + CG + RZ 355 MB 547 MB 827 MB 853 MB
Reduction 1.93× 2.14× 1.42× 1.45×

Table 5.8: Effects of LART optimizations on memory required for verification.
Reduction shows the best achieved reduction.
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Name No
LART

Const alloca + Const Global

simple-tso-1† 3.45 k 3.36 k 1.03× 3.36 k 1.02×
simple-tso-2† 5.97 k 5.86 k 1.02× 5.79 k 1.03×
simple-tso-3† 15.7 k 15.4 k 1.02× 15.4 k 1.02×
simple-std-1† 3.52 k 3.38 k 1.04× 3.38 k 1.04×
simple-std-2† 8.07 k 7.51 k 1.07× 7.45 k 1.08×
simple-std-3† 23.6 k 19.7 k 1.2× 19.4 k 1.21×
peterson-tso-1† 21.8 k 10.8 k 2.02× 11 k 1.99×
peterson-tso-2† 53.4 k 33 k 1.62× 32.6 k 1.64×
peterson-tso-3† 55.7 k 36 k 1.55× 36.4 k 1.53×
peterson-std-1† 22 k 11 k 2× 10.8 k 2.04×
peterson-std-2† 56.3 k 35.6 k 1.58× 35.5 k 1.59×
peterson-std-3† 69.8 k 46.2 k 1.51× 46.1 k 1.51×
fifo-tso-1 14.9 k 12.7 k 1.17× 12.7 k 1.17×
fifo-tso-2 35.9 k 30.9 k 1.16× 30.9 k 1.16×
fifo-tso-3 48.8 k 42.1 k 1.16× 42.1 k 1.16×
fifo-std-1 18.3 k 15.7 k 1.17× 15.7 k 1.17×
fifo-std-2† 15.6 k 13.2 k 1.18× 13.6 k 1.15×
fifo-std-3† 23 k 19.6 k 1.17× 19.9 k 1.16×
fifo-at-tso-1 39.5 k 39.3 k 1.01× 39.3 k 1.01×
fifo-at-tso-2 167 k 166 k 1× 166 k 1×
fifo-at-tso-3 497 k 496 k 1× 496 k 1×
fifo-at-std-1 53.5 k 53.1 k 1.01× 53.1 k 1.01×
fifo-at-std-2 256 k 254 k 1.01× 253 k 1.01×
fifo-at-std-3 1.07 M 1.05 M 1.01× 1.05 M 1.01×
fifo-bug-tso-1† 11.3 k 10.2 k 1.11× 10.1 k 1.12×
fifo-bug-tso-2† 44.2 k 38.6 k 1.15× 38.8 k 1.14×
fifo-bug-tso-3† 68.7 k 57.2 k 1.2× 57.7 k 1.19×
fifo-bug-std-1† 12.1 k 10.6 k 1.15× 10.4 k 1.17×
fifo-bug-std-2† 14.1 k 12.4 k 1.14× 11.9 k 1.19×
fifo-bug-std-3† 21.1 k 17.8 k 1.18× 17.9 k 1.18×
hs-2-1-0-tso-1 250 M 184 M 1.36× 184 M 1.36×

Table 5.9: Results of weak memory model examples with LART optimiza-
tions.
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Chapter 6

Conclusion

We showed that LLVM transformations are a useful preprocessing step for
model checking of real-world programs, namely in verification of C and
C++ using the DIVINE explicit-state model checker. We showed that LLVM
transformations are usable in many ways, both to extend verifier’s abilities
and to decrease the size of the verification problem.

We proposed and implemented an instrumentation which adds under-
approximation of LLVM memory models into a program in such a way that the
result can be verified with DIVINE. This transformation allows verification of
programs under the LLVM memory model on an unmodified verifier which
assumes sequential consistency. This transformation extends the one presented
in [42] in a number of ways, namely it supports parametrized memory models,
including memory models weaker than total store order, it fully supports
LLVM atomic instructions (and therefore C++11 atomic library), and it is up
to several orders of magnitude more efficient than the version in [42]. Despite
the state space explosion, which is even more pronounced for programs with
relaxed memory models, we were able to verify several benchmarks, including
unit tests of real-world data structures.

We also showed the usefulness of LLVM transformations on the case of
annotated atomic functions, and on adaptation of SV-COMP benchmarks to
DIVINE.

In the case of state space reductions, we proposed the use of LLVM opti-
mizations which do not change the behaviour of parallel programs and do not
increase state space size. We proposed and implemented a few such optimiza-
tions and evaluated them. We showed that some of these transformations,
namely lifting of local variables into registers, can reduce state space size and
memory requirements of DIVINE.

While working on this thesis, we also uncovered a bug in the implementa-
tion of DIVINE’s τ+ state space reductions and found cases in which these
reductions could be improved. These improvements were implemented and
evaluated and turned out to have a significant impact.
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The proposed extensions, namely instrumentation for weak memory models,
as well as some of the reduction techniques, will be included in the next
version of DIVINE.

6.1 Future Work
There is a lot of future work in the field of LLVM transformations as a
preprocessing step for verification of real-world code and we would like to
continue to work in this field.

Efficient verification with weak memory models is still somewhat problem-
atic and we believe that there is still room for improvement of the transforma-
tion technique. Namely, static detection of thread-local memory locations, for
example using pointer analysis, could prove to be useful in reducing the state
space size of programs with weak memory model simulation, since accesses to
such memory locations need not be instrumented with memory model simula-
tion. The results also show that the difference between total store order and
partial store order simulation is not as big as expected, which suggests that
the total store order simulation could be improved.

Further extensions of DIVINE’s abilities by using LLVM transformations
are also a topic for future work. One such possibility is the use of abstractions
which was proposed in [33]; another is integration of the control-explicit-data-
symbolic approach to model checking [3] into DIVINE with the help of LLVM
transformations.

Finally, more advanced optimization techniques should be evaluated in
the field of state space reductions. One example of such a technique is dealing
with control flow loops which do not cause infinite loops in the program. Also,
slicing, static partial order reduction, and symmetry reduction could be useful
for state space reduction.



Appendix A

Archive Structure and
Compilation

A.1 Archive Structure
The archive submitted with this thesis contains the sources of the thesis
itself and a Darcs repository with DIVINE. The DIVINE repository is a snap-
shot of http://paradise.fi.muni.cz/~xstill/dev/divine/next-xstill,
taken at the time of submission of this thesis. You can use the command
darcs log -is in the divine subdirectory to browse the changes to DIVINE.
Since the primary aim of this thesis are LLVM transformations, most of the
implementation was done in LART; patches concerning LART are prefixed
with LART, they can be listed by darcs log -is --match 'name LART:'.

A.2 Compilation and Running of DIVINE and LART
A.2.1 Prerequisites

In order to compile DIVINE and LART, it is necessary to have an up-to-date
Linux distribution with a C++14 capable compiler. The compilation was
tested with GCC 5.3.0 and Clang 3.7.0, both using libstdc++ 5.3.0 as the C++
standard library. Furthermore, it is necessary to have LLVM 3.7.0, including
development libraries, Clang 3.7.0, and CMake.

A.2.2 Compilation

It should be sufficient to run the following commands in the root directory of
the archive; please pay attention to the output of configure, to see if it was
able to find LLVM and Clang:

cd divine
./configure

81

http://paradise.fi.muni.cz/~xstill/dev/divine/next-xstill


82 APPENDIX A. ARCHIVE STRUCTURE AND COMPILATION

cd _build
make lart divine
ls tools

The last command should show that there are binaries divine and lart in
tools subdirectory.

A.2.3 Compilation of Program for DIVINE
An input for DIVINE is an LLVM bitcode file which can be obtained from the
source using the divine compile command, for example:

./tools/divine compile model.cpp --cflags=-std=c++11

Please refer to divine compile --help for more details.

A.2.4 Running LART
The basic usage of LART is: lart <input> <output> [<pass> [...]], the
input and output are LLVM bitcode files, each pass is a LART pass; a list of
available passes can be seen by running lart without any parameters.

For example bitcode in model.bc can be instrumented with weak memory
models (Section 4.4) with store buffer limited to 2 entries with the following
command:

# this is unrestricted LLVM memory model
./tools/lart model.bc model-wm.bc weakmem::2
# Total Store Order:
./tools/lart model.bc model-wm.bc weakmem:tso:2

A.2.5 Running DIVINE
The model can be verified by DIVINE using the divine verify command;
this command expects a model name and optionally several parameters such
as the algorithm, the reductions to be used, and the property to be verified.
Among the most important options is --compression, which enables lossless
tree compression, which vastly improves memory efficiency of DIVINE.

# run DIVINE with default property (safety) on model-wm.bc
./tools/divine verify --compression model-wm.bc
# verify only assertion safety
./tools/divine verify --compression model-wm.bc -p assert
# use Context Switch Directed Reachability algorithm
./tools/divine verify --csdr --compression model-wm.bc
# verify exclusion LTL property (specified in the model)
./tools/divine verify --compression model-wm.bc -p exclusion
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